You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
2.9 KiB
87 lines
2.9 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
|
|
|
|
def fsp_matrix(a, b):
|
|
batch = a.shape[0]
|
|
a_channel = a.shape[1]
|
|
b_channel = b.shape[1]
|
|
h = a.shape[2]
|
|
w = a.shape[3]
|
|
a_t = a.transpose([0, 2, 3, 1])
|
|
a_t = a_t.reshape([batch, h * w, a_channel])
|
|
b_t = b.transpose([0, 2, 3, 1]).reshape([batch, h * w, b_channel])
|
|
a_r = a_t.repeat(
|
|
b_channel, axis=1).reshape(
|
|
[batch, h * w, b_channel, a_channel]).transpose([0, 1, 3, 2])
|
|
b_r = b_t.repeat(
|
|
a_channel, axis=1).reshape([batch, h * w, a_channel, b_channel])
|
|
return np.mean(a_r * b_r, axis=1)
|
|
|
|
|
|
class TestFSPOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "fsp"
|
|
self.initTestCase()
|
|
|
|
feature_map_0 = np.random.uniform(0, 10, self.a_shape).astype('float64')
|
|
feature_map_1 = np.random.uniform(0, 10, self.b_shape).astype('float64')
|
|
|
|
self.inputs = {'X': feature_map_0, 'Y': feature_map_1}
|
|
self.outputs = {'Out': fsp_matrix(feature_map_0, feature_map_1)}
|
|
|
|
def initTestCase(self):
|
|
self.a_shape = (2, 3, 5, 6)
|
|
self.b_shape = (2, 4, 5, 6)
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
|
|
class BadInputTest(unittest.TestCase):
|
|
def test_error(self):
|
|
with fluid.program_guard(fluid.Program()):
|
|
|
|
def test_bad_x():
|
|
data = fluid.layers.data(name='data', shape=[3, 32, 32])
|
|
feature_map_0 = [1, 2, 3]
|
|
feature_map_1 = fluid.layers.conv2d(
|
|
data, num_filters=2, filter_size=3)
|
|
loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)
|
|
|
|
self.assertRaises(TypeError, test_bad_x)
|
|
|
|
def test_bad_y():
|
|
data = fluid.layers.data(name='data', shape=[3, 32, 32])
|
|
feature_map_0 = fluid.layers.conv2d(
|
|
data, num_filters=2, filter_size=3)
|
|
feature_map_1 = [1, 2, 3]
|
|
loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)
|
|
|
|
self.assertRaises(TypeError, test_bad_y)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|