You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
9.6 KiB
312 lines
9.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.framework import core
|
|
|
|
|
|
def gather_numpy(x, index, axis):
|
|
x_transpose = np.swapaxes(x, 0, axis)
|
|
tmp_gather = x_transpose[index, ...]
|
|
gather = np.swapaxes(tmp_gather, 0, axis)
|
|
return gather
|
|
|
|
|
|
class TestGatherOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "gather"
|
|
self.config()
|
|
xnp = np.random.random(self.x_shape).astype(self.x_type)
|
|
self.inputs = {
|
|
'X': xnp,
|
|
'Index': np.array(self.index).astype(self.index_type)
|
|
}
|
|
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
def config(self):
|
|
"""
|
|
For multi-dimension input
|
|
"""
|
|
self.x_shape = (10, 20)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int32"
|
|
|
|
|
|
class TestCase1(TestGatherOp):
|
|
def config(self):
|
|
"""
|
|
For one dimension input
|
|
"""
|
|
self.x_shape = (100)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int32"
|
|
|
|
|
|
class TestCase2(TestGatherOp):
|
|
def config(self):
|
|
"""
|
|
For int64_t index type
|
|
"""
|
|
self.x_shape = (100)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int64"
|
|
|
|
|
|
class TestCase3(TestGatherOp):
|
|
def config(self):
|
|
"""
|
|
For other input type
|
|
"""
|
|
self.x_shape = (10, 20)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int64"
|
|
|
|
|
|
class TestCase4(TestGatherOp):
|
|
def config(self):
|
|
self.x_shape = (10, 20)
|
|
self.attrs = {'overwrite': False}
|
|
self.x_type = "double"
|
|
self.index = [1, 1]
|
|
self.index_type = "int32"
|
|
|
|
|
|
class TestCase5(TestGatherOp):
|
|
def config(self):
|
|
self.x_shape = (10, 20)
|
|
self.attrs = {'overwrite': False}
|
|
self.x_type = "float64"
|
|
self.index = [1, 1, 3]
|
|
self.index_type = "int32"
|
|
|
|
|
|
class TestCase6(TestGatherOp):
|
|
def config(self):
|
|
self.x_shape = (10, 20)
|
|
self.attrs = {'overwrite': True}
|
|
self.x_type = "float64"
|
|
self.index = [1, 3]
|
|
self.index_type = "int32"
|
|
|
|
|
|
class TestGatherOp1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "gather"
|
|
self.config()
|
|
xnp = np.random.random(self.x_shape).astype(self.x_type)
|
|
axis_np = np.array(self.axis).astype(self.index_type)
|
|
index_np = np.array(self.index).astype(self.index_type)
|
|
out = gather_numpy(xnp, index_np, axis_np[0])
|
|
self.inputs = {'X': xnp, 'Index': index_np, 'Axis': axis_np}
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
def config(self):
|
|
"""
|
|
For multi-dimension input
|
|
"""
|
|
self.x_shape = (3, 88, 3)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int32"
|
|
self.axis = [1]
|
|
self.axis_type = "int32"
|
|
|
|
|
|
class TestGatherOp2(TestGatherOp1):
|
|
def config(self):
|
|
"""
|
|
For multi-dimension input
|
|
"""
|
|
self.x_shape = (10, 88, 10)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int64"
|
|
self.axis = [0]
|
|
self.axis_type = "int32"
|
|
|
|
|
|
class TestGatherOp3(TestGatherOp1):
|
|
def config(self):
|
|
"""
|
|
For multi-dimension input
|
|
"""
|
|
self.x_shape = (10, 88, 10)
|
|
self.x_type = "float64"
|
|
self.index = [1, 3, 5]
|
|
self.index_type = "int64"
|
|
self.axis = [2]
|
|
self.axis_type = "int32"
|
|
|
|
|
|
class TestGatherOp4(TestGatherOp1):
|
|
def config(self):
|
|
"""
|
|
For multi-dimension input
|
|
"""
|
|
self.x_shape = (3, 100, 10)
|
|
self.x_type = "float64"
|
|
self.index = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
|
self.index_type = "int64"
|
|
self.axis = [0]
|
|
self.axis_type = "int32"
|
|
|
|
|
|
class API_TestGather(unittest.TestCase):
|
|
def test_out1(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64')
|
|
index = fluid.layers.data('index', shape=[-1, 1], dtype='int32')
|
|
out = paddle.fluid.layers.gather(data1, index)
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
input = np.array([[1, 2], [3, 4], [5, 6]])
|
|
index_1 = np.array([1, 2])
|
|
result, = exe.run(feed={"data1": input,
|
|
"index": index_1},
|
|
fetch_list=[out])
|
|
expected_output = np.array([[3, 4], [5, 6]])
|
|
self.assertTrue(np.allclose(result, expected_output))
|
|
|
|
def test_out2(self):
|
|
with paddle.static.program_guard(paddle.static.Program(),
|
|
paddle.static.Program()):
|
|
x = paddle.fluid.data('x', shape=[-1, 2], dtype='float64')
|
|
index = paddle.fluid.data('index', shape=[-1, 1], dtype='int32')
|
|
axis = paddle.fluid.data('axis', shape=[1], dtype='int32')
|
|
out = paddle.gather(x, index, axis)
|
|
place = paddle.CPUPlace()
|
|
exe = paddle.static.Executor(place)
|
|
x_np = np.array([[1, 2], [3, 4], [5, 6]]).astype('float64')
|
|
index_np = np.array([1, 1]).astype('int32')
|
|
axis_np = np.array([1]).astype('int32')
|
|
result, = exe.run(
|
|
feed={"x": x_np,
|
|
"index": index_np,
|
|
'axis': axis_np},
|
|
fetch_list=[out])
|
|
expected_output = gather_numpy(x_np, index_np, axis_np[0])
|
|
self.assertTrue(np.allclose(result, expected_output))
|
|
|
|
|
|
class API_TestDygraphGather(unittest.TestCase):
|
|
def test_out1(self):
|
|
paddle.disable_static()
|
|
input_1 = np.array([[1, 2], [3, 4], [5, 6]])
|
|
index_1 = np.array([1, 2])
|
|
input = paddle.to_tensor(input_1)
|
|
index = paddle.to_tensor(index_1)
|
|
output = paddle.fluid.layers.gather(input, index)
|
|
output_np = output.numpy()
|
|
expected_output = np.array([[3, 4], [5, 6]])
|
|
self.assertTrue(np.allclose(output_np, expected_output))
|
|
paddle.enable_static()
|
|
|
|
def test_out12(self):
|
|
paddle.disable_static()
|
|
input_1 = np.array([[1, 2], [3, 4], [5, 6]])
|
|
index_1 = np.array([1, 2])
|
|
x = paddle.to_tensor(input_1)
|
|
index = paddle.to_tensor(index_1)
|
|
output = paddle.gather(x, index, axis=0)
|
|
output_np = output.numpy()
|
|
expected_output = gather_numpy(input_1, index_1, axis=0)
|
|
self.assertTrue(np.allclose(output_np, expected_output))
|
|
paddle.enable_static()
|
|
|
|
|
|
class TestGathertError(unittest.TestCase):
|
|
def test_error1(self):
|
|
with paddle.static.program_guard(paddle.static.Program(),
|
|
paddle.static.Program()):
|
|
|
|
shape = [8, 9, 6]
|
|
x = paddle.fluid.data(shape=shape, dtype='int8', name='x')
|
|
axis = paddle.fluid.data(shape=[1], dtype='float32', name='axis')
|
|
index = paddle.fluid.data(shape=shape, dtype='int32', name='index')
|
|
index_float = paddle.fluid.data(
|
|
shape=shape, dtype='float32', name='index_float')
|
|
|
|
def test_x_type():
|
|
paddle.gather(x, index)
|
|
|
|
self.assertRaises(TypeError, test_x_type)
|
|
|
|
def test_index_type():
|
|
paddle.gather(x, index_float)
|
|
|
|
self.assertRaises(TypeError, test_index_type)
|
|
|
|
def test_axis_dtype():
|
|
paddle.gather(x, index, axis=1.11)
|
|
|
|
self.assertRaises(TypeError, test_axis_dtype)
|
|
|
|
def test_axis_dtype():
|
|
paddle.gather(x, index, axis=axis)
|
|
|
|
self.assertRaises(TypeError, test_axis_dtype)
|
|
|
|
def test_error2(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
shape = [8, 9, 6]
|
|
x = fluid.data(shape=shape, dtype='int8', name='x')
|
|
index = fluid.data(shape=shape, dtype='int32', name='mask')
|
|
index_float = fluid.data(
|
|
shape=shape, dtype='float32', name='index_float')
|
|
|
|
def test_x_type():
|
|
paddle.fluid.layers.gather(x, index)
|
|
|
|
self.assertRaises(TypeError, test_x_type)
|
|
|
|
def test_index_type():
|
|
paddle.fluid.layers.gather(x, index_float)
|
|
|
|
self.assertRaises(TypeError, test_index_type)
|
|
|
|
|
|
class TestCheckOutType(unittest.TestCase):
|
|
def test_out_type(self):
|
|
data = paddle.static.data(shape=[16, 10], dtype='int64', name='x')
|
|
index = paddle.static.data(shape=[4], dtype='int64', name='index')
|
|
out = paddle.gather(data, index)
|
|
self.assertTrue(out.dtype == core.VarDesc.VarType.INT64)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|