You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_gaussian_random_op.py

292 lines
9.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from op_test import OpTest
import paddle
class TestGaussianRandomOp(OpTest):
def setUp(self):
self.op_type = "gaussian_random"
self.set_attrs()
self.inputs = {}
self.use_mkldnn = False
self.attrs = {
"shape": [123, 92],
"mean": self.mean,
"std": self.std,
"seed": 10,
"use_mkldnn": self.use_mkldnn
}
paddle.seed(10)
self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
def set_attrs(self):
self.mean = 1.0
self.std = 2.
def test_check_output(self):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
self.assertEqual(outs[0].shape, (123, 92))
hist, _ = np.histogram(outs[0], range=(-3, 5))
hist = hist.astype("float32")
hist /= float(outs[0].size)
data = np.random.normal(size=(123, 92), loc=1, scale=2)
hist2, _ = np.histogram(data, range=(-3, 5))
hist2 = hist2.astype("float32")
hist2 /= float(outs[0].size)
self.assertTrue(
np.allclose(
hist, hist2, rtol=0, atol=0.01),
"hist: " + str(hist) + " hist2: " + str(hist2))
class TestMeanStdAreInt(TestGaussianRandomOp):
def set_attrs(self):
self.mean = 1
self.std = 2
# Situation 2: Attr(shape) is a list(with tensor)
class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp):
def setUp(self):
'''Test gaussian_random op with specified value
'''
self.op_type = "gaussian_random"
self.init_data()
shape_tensor_list = []
for index, ele in enumerate(self.shape):
shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.attrs = {
'shape': self.infer_shape,
'mean': self.mean,
'std': self.std,
'seed': self.seed,
'use_mkldnn': self.use_mkldnn
}
self.inputs = {"ShapeTensorList": shape_tensor_list}
self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, 92]
self.use_mkldnn = False
self.mean = 1.0
self.std = 2.0
self.seed = 10
def test_check_output(self):
self.check_output_customized(self.verify_output)
class TestGaussianRandomOp2_ShapeTensorList(
TestGaussianRandomOp_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, -1]
self.use_mkldnn = False
self.mean = 1.0
self.std = 2.0
self.seed = 10
class TestGaussianRandomOp3_ShapeTensorList(
TestGaussianRandomOp_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.use_mkldnn = True
self.mean = 1.0
self.std = 2.0
self.seed = 10
class TestGaussianRandomOp4_ShapeTensorList(
TestGaussianRandomOp_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.use_mkldnn = False
self.mean = 1.0
self.std = 2.0
self.seed = 10
# Situation 3: shape is a tensor
class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp):
def setUp(self):
'''Test gaussian_random op with specified value
'''
self.op_type = "gaussian_random"
self.init_data()
self.use_mkldnn = False
self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
self.attrs = {
'mean': self.mean,
'std': self.std,
'seed': self.seed,
'use_mkldnn': self.use_mkldnn
}
self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
def init_data(self):
self.shape = [123, 92]
self.use_mkldnn = False
self.mean = 1.0
self.std = 2.0
self.seed = 10
# Test python API
class TestGaussianRandomAPI(unittest.TestCase):
def test_api(self):
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500)
shape_tensor_int32 = fluid.data(
name="shape_tensor_int32", shape=[2], dtype="int32")
shape_tensor_int64 = fluid.data(
name="shape_tensor_int64", shape=[2], dtype="int64")
out_1 = fluid.layers.gaussian_random(
shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10)
out_2 = fluid.layers.gaussian_random(
shape=[2000, positive_2_int32],
dtype="float32",
mean=0.,
std=1.0,
seed=10)
out_3 = fluid.layers.gaussian_random(
shape=[2000, positive_2_int64],
dtype="float32",
mean=0.,
std=1.0,
seed=10)
out_4 = fluid.layers.gaussian_random(
shape=shape_tensor_int32,
dtype="float32",
mean=0.,
std=1.0,
seed=10)
out_5 = fluid.layers.gaussian_random(
shape=shape_tensor_int64,
dtype="float32",
mean=0.,
std=1.0,
seed=10)
out_6 = fluid.layers.gaussian_random(
shape=shape_tensor_int64,
dtype=np.float32,
mean=0.,
std=1.0,
seed=10)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4, res_5, res_6 = exe.run(
fluid.default_main_program(),
feed={
"shape_tensor_int32": np.array([2000, 500]).astype("int32"),
"shape_tensor_int64": np.array([2000, 500]).astype("int64"),
},
fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6])
self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_1), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_2), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_3), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1)
self.assertAlmostEqual(np.std(res_6), 1., delta=0.1)
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.gaussian([2, 3])
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.gaussian([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.gaussian([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp64()
test_default_fp32()
paddle.enable_static()
class TestStandardNormalDtype(unittest.TestCase):
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.standard_normal([2, 3])
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.standard_normal([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.standard_normal([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp64()
test_default_fp32()
paddle.enable_static()
if __name__ == "__main__":
unittest.main()