You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_grid_sampler_op.py

241 lines
7.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def AffineGrid(theta, grid_shape):
n = grid_shape[0]
h = grid_shape[1]
w = grid_shape[2]
h_idx = np.repeat(
np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis]
w_idx = np.repeat(
np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis]
grid = np.concatenate(
[w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3
grid = np.repeat(grid[np.newaxis, :], n, axis=0) # n * h * w *3
ret = np.zeros([n, h * w, 2])
theta = theta.transpose([0, 2, 1])
for i in range(len(theta)):
ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])
return ret.reshape([n, h, w, 2]).astype("float64")
def getGridPointValue(data, x, y):
data_shape = data.shape
N = data_shape[0]
C = data_shape[1]
in_H = data_shape[2]
in_W = data_shape[3]
out_H = x.shape[1]
out_W = x.shape[2]
#out = np.zeros(data_shape, dtype='float64')
out = np.zeros([N, C, out_H, out_W], dtype='float64')
for i in range(N):
for j in range(out_H):
for k in range(out_W):
if y[i, j, k] < 0 or y[i, j, k] > in_H - 1 or x[
i, j, k] < 0 or x[i, j, k] > in_W - 1:
out[i, :, j, k] = 0
else:
out[i, :, j, k] = data[i, :, y[i, j, k], x[i, j, k]]
return out
def clip(x, min_n, max_n):
return np.maximum(np.minimum(x, max_n), min_n)
def unnormalizeAndClip(grid_slice, max_val, align_corners, padding_mode):
if align_corners:
grid_slice = 0.5 * ((grid_slice.astype('float64') + 1.0) * max_val)
else:
grid_slice = 0.5 * (
(grid_slice.astype('float64') + 1.0) * (max_val + 1)) - 0.5
if padding_mode == "border":
grid_slice = clip(grid_slice, 0, max_val)
elif padding_mode == "reflection":
double_range = 2 * max_val if align_corners else (max_val + 1) * 2
grid_abs = np.abs(grid_slice) if align_corners else np.abs(grid_slice +
0.5)
extra = grid_abs - np.floor(grid_abs / double_range) * double_range
grid_slice = np.minimum(extra, double_range - extra)
grid_slice = grid_slice if align_corners else clip(grid_slice - 0.5, 0,
max_val)
return grid_slice
def GridSampler(data,
grid,
align_corners=True,
mode="bilinear",
padding_mode="zeros"):
dims = data.shape
N = dims[0]
in_C = dims[1]
in_H = dims[2]
in_W = dims[3]
out_H = grid.shape[1]
out_W = grid.shape[2]
x = grid[:, :, :, 0]
y = grid[:, :, :, 1]
y_max = in_H - 1
x_max = in_W - 1
x = unnormalizeAndClip(x, x_max, align_corners, padding_mode)
y = unnormalizeAndClip(y, y_max, align_corners, padding_mode)
if mode == "bilinear":
x0 = np.floor(x).astype('int32')
x1 = x0 + 1
y0 = np.floor(y).astype('int32')
y1 = y0 + 1
wa = np.tile(((x1 - x) * (y1 - y)).reshape((N, 1, out_H, out_W)),
(1, in_C, 1, 1))
wb = np.tile(((x1 - x) * (y - y0)).reshape((N, 1, out_H, out_W)),
(1, in_C, 1, 1))
wc = np.tile(((x - x0) * (y1 - y)).reshape((N, 1, out_H, out_W)),
(1, in_C, 1, 1))
wd = np.tile(((x - x0) * (y - y0)).reshape((N, 1, out_H, out_W)),
(1, in_C, 1, 1))
va = getGridPointValue(data, x0, y0)
vb = getGridPointValue(data, x0, y1)
vc = getGridPointValue(data, x1, y0)
vd = getGridPointValue(data, x1, y1)
out = (wa * va + wb * vb + wc * vc + wd * vd).astype('float64')
elif mode == "nearest":
x = np.round(x).astype('int32')
y = np.round(y).astype('int32')
out = getGridPointValue(data, x, y)
return out
class TestGridSamplerOp(OpTest):
def setUp(self):
self.use_cudnn = False
self.numeric_grad_delta = 0.0001
self.op_type = 'grid_sampler'
self.align_corners = True
self.padding_mode = "zeros"
self.mode = "bilinear"
self.initTestCase()
x = np.random.randint(0, 255, self.x_shape).astype('float64')
theta = np.zeros(self.theta_shape).astype('float64')
for i in range(self.theta_shape[0]):
for j in range(2):
for k in range(3):
theta[i, j, k] = np.random.rand(1)[0]
grid = AffineGrid(theta, self.grid_shape)
self.inputs = {'X': x, 'Grid': grid}
self.attrs = {
'use_cudnn': self.use_cudnn,
"align_corners": self.align_corners,
"padding_mode": self.padding_mode,
"mode": self.mode
}
# print("X: {}".format(x))
self.outputs = {
'Output': GridSampler(x, grid, self.align_corners, self.mode,
self.padding_mode)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(
['X', 'Grid'],
'Output',
max_relative_error=0.01,
numeric_grad_delta=self.numeric_grad_delta)
def initTestCase(self):
self.x_shape = (2, 3, 8, 8)
self.grid_shape = (2, 7, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = True
self.padding_mode = "zeros"
self.mode = "bilinear"
self.use_cudnn = True
class Case1(TestGridSamplerOp):
def initTestCase(self):
self.x_shape = (2, 3, 5, 6)
self.grid_shape = (2, 8, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = False
self.padding_mode = "zeros"
self.mode = "bilinear"
class Case1(TestGridSamplerOp):
def initTestCase(self):
self.x_shape = (2, 3, 5, 6)
self.grid_shape = (2, 8, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = False
self.padding_mode = "border"
self.mode = "bilinear"
class Case2(TestGridSamplerOp):
def initTestCase(self):
self.x_shape = (2, 3, 5, 6)
self.grid_shape = (2, 8, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = False
self.padding_mode = "reflection"
self.mode = "bilinear"
class Case3(TestGridSamplerOp):
def initTestCase(self):
self.x_shape = (2, 3, 5, 6)
self.grid_shape = (2, 8, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = True
self.padding_mode = "reflection"
self.mode = "bilinear"
class Case4(TestGridSamplerOp):
def initTestCase(self):
self.x_shape = (2, 3, 5, 6)
self.grid_shape = (2, 8, 9, 2)
self.theta_shape = (2, 2, 3)
self.align_corners = False
self.padding_mode = "reflection"
self.mode = "nearest"
self.numeric_grad_delta = 0.0001
if __name__ == "__main__":
unittest.main()