You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.1 KiB
143 lines
5.1 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid import Program, program_guard
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestHistogramOpAPI(unittest.TestCase):
|
|
"""Test histogram api."""
|
|
|
|
def test_static_graph(self):
|
|
startup_program = fluid.Program()
|
|
train_program = fluid.Program()
|
|
with fluid.program_guard(train_program, startup_program):
|
|
inputs = fluid.data(name='input', dtype='int64', shape=[2, 3])
|
|
output = paddle.histogram(inputs, bins=5, min=1, max=5)
|
|
place = fluid.CPUPlace()
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_program)
|
|
img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
|
|
res = exe.run(train_program,
|
|
feed={'input': img},
|
|
fetch_list=[output])
|
|
actual = np.array(res[0])
|
|
expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
|
|
self.assertTrue(
|
|
(actual == expected).all(),
|
|
msg='histogram output is wrong, out =' + str(actual))
|
|
|
|
def test_dygraph(self):
|
|
with fluid.dygraph.guard():
|
|
inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
|
|
inputs = fluid.dygraph.to_variable(inputs_np)
|
|
actual = paddle.histogram(inputs, bins=5, min=1, max=5)
|
|
expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
|
|
self.assertTrue(
|
|
(actual.numpy() == expected).all(),
|
|
msg='histogram output is wrong, out =' + str(actual.numpy()))
|
|
|
|
|
|
class TestHistogramOpError(unittest.TestCase):
|
|
"""Test histogram op error."""
|
|
|
|
def run_network(self, net_func):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
net_func()
|
|
exe = fluid.Executor()
|
|
exe.run(main_program)
|
|
|
|
def test_bins_error(self):
|
|
"""Test bins should be greater than or equal to 1."""
|
|
|
|
def net_func():
|
|
input_value = paddle.fluid.layers.fill_constant(
|
|
shape=[3, 4], dtype='float32', value=3.0)
|
|
paddle.histogram(input=input_value, bins=-1, min=1, max=5)
|
|
|
|
with self.assertRaises(IndexError):
|
|
self.run_network(net_func)
|
|
|
|
def test_min_max_error(self):
|
|
"""Test max must be larger or equal to min."""
|
|
|
|
def net_func():
|
|
input_value = paddle.fluid.layers.fill_constant(
|
|
shape=[3, 4], dtype='float32', value=3.0)
|
|
paddle.histogram(input=input_value, bins=1, min=5, max=1)
|
|
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_min_max_range_error(self):
|
|
"""Test range of min, max is not finite"""
|
|
|
|
def net_func():
|
|
input_value = paddle.fluid.layers.fill_constant(
|
|
shape=[3, 4], dtype='float32', value=3.0)
|
|
paddle.histogram(input=input_value, bins=1, min=-np.inf, max=5)
|
|
|
|
with self.assertRaises(ValueError):
|
|
self.run_network(net_func)
|
|
|
|
def test_type_errors(self):
|
|
with program_guard(Program()):
|
|
# The input type must be Variable.
|
|
self.assertRaises(
|
|
TypeError, paddle.histogram, 1, bins=5, min=1, max=5)
|
|
# The input type must be 'int32', 'int64', 'float32', 'float64'
|
|
x_bool = fluid.data(name='x_bool', shape=[4, 3], dtype='bool')
|
|
self.assertRaises(
|
|
TypeError, paddle.histogram, x_bool, bins=5, min=1, max=5)
|
|
|
|
|
|
class TestHistogramOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "histogram"
|
|
self.init_test_case()
|
|
np_input = np.random.uniform(low=0.0, high=20.0, size=self.in_shape)
|
|
self.inputs = {"X": np_input}
|
|
self.init_attrs()
|
|
Out, _ = np.histogram(
|
|
np_input, bins=self.bins, range=(self.min, self.max))
|
|
self.outputs = {"Out": Out.astype(np.int64)}
|
|
|
|
def init_test_case(self):
|
|
self.in_shape = (10, 12)
|
|
self.bins = 5
|
|
self.min = 1
|
|
self.max = 5
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"bins": self.bins, "min": self.min, "max": self.max}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paddle.enable_static()
|
|
unittest.main()
|