You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_basic.py

811 lines
31 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import Linear
from paddle.fluid.layer_helper import LayerHelper
from test_imperative_base import new_program_scope
import paddle.fluid.dygraph_utils as dygraph_utils
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
import paddle
class MyLayer(fluid.Layer):
def __init__(self):
super(MyLayer, self).__init__()
def forward(self, inputs):
x = fluid.layers.relu(inputs)
self._x_for_debug = x
x = fluid.layers.elementwise_mul(x, x)
x = fluid.layers.reduce_sum(x)
return [x]
class MLP(fluid.Layer):
def __init__(self, input_size):
super(MLP, self).__init__()
self._linear1 = None
self._linear1 = Linear(
input_size,
3,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)))
self._linear2 = Linear(
3,
4,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs):
x = self._linear1(inputs)
x = self._linear2(x)
x = fluid.layers.reduce_sum(x)
return x
class SimpleRNNCell(fluid.Layer):
def __init__(self, step_input_size, hidden_size, output_size, param_attr):
super(SimpleRNNCell, self).__init__()
self.step_input_size = step_input_size
self.hidden_size = hidden_size
self.output_size = output_size
self._dtype = core.VarDesc.VarType.FP32
self.param_attr = param_attr
i2h_param_shape = [self.step_input_size, self.hidden_size]
h2h_param_shape = [self.hidden_size, self.hidden_size]
h2o_param_shape = [self.output_size, self.hidden_size]
self._i2h_w = None
self._i2h_w = self.create_parameter(
attr=self.param_attr,
shape=i2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2h_w = self.create_parameter(
attr=self.param_attr,
shape=h2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2o_w = self.create_parameter(
attr=self.param_attr,
shape=h2o_param_shape,
dtype=self._dtype,
is_bias=False)
def forward(self, input, pre_hidden):
tmp_i2h = self.create_variable(dtype=self._dtype)
tmp_h2h = self.create_variable(dtype=self._dtype)
hidden = self.create_variable(dtype=self._dtype)
out = self.create_variable(dtype=self._dtype)
softmax_out = self.create_variable(dtype=self._dtype)
reduce_out = self.create_variable(dtype=self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._i2h_w},
outputs={"Out": tmp_i2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="mul",
inputs={"X": pre_hidden,
"Y": self._h2h_w},
outputs={"Out": tmp_h2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="elementwise_add",
inputs={'X': tmp_h2h,
'Y': tmp_i2h},
outputs={'Out': hidden},
attrs={'axis': -1,
'use_mkldnn': False})
hidden = self._helper.append_activation(hidden, act='tanh')
self._helper.append_op(
type="mul",
inputs={"X": hidden,
"Y": self._h2o_w},
outputs={"Out": out},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="softmax",
inputs={"X": out},
outputs={"Out": softmax_out},
attrs={"use_cudnn": False})
self._helper.append_op(
type='reduce_sum',
inputs={'X': softmax_out},
outputs={'Out': reduce_out},
attrs={'keep_dim': False,
'reduce_all': True})
return reduce_out, hidden
class SimpleRNN(fluid.Layer):
def __init__(self):
super(SimpleRNN, self).__init__()
self.seq_len = 4
self._cell = SimpleRNNCell(
3,
3,
3,
fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs):
outs = list()
pre_hiddens = list()
init_hidden = self.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
shape=[1, 3],
dtype='float32',
is_bias=False)
pre_hidden = init_hidden
for i in range(self.seq_len):
input = fluid.layers.slice(
inputs, axes=[1], starts=[i], ends=[i + 1])
input = fluid.layers.reshape(input, shape=[1, 3])
out_softmax, pre_hidden = self._cell(input, pre_hidden)
outs.append(out_softmax)
return outs, pre_hiddens
class TestImperative(unittest.TestCase):
def test_functional_dygraph_context(self):
self.assertFalse(fluid.dygraph.enabled())
fluid.enable_dygraph()
self.assertTrue(fluid.dygraph.enabled())
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
var_inp = fluid.dygraph.base.to_variable(np_inp)
mlp = MLP(input_size=2)
out = mlp(var_inp)
dy_out1 = out.numpy()
out.backward()
dy_grad1 = mlp._linear1.weight.gradient()
fluid.disable_dygraph()
self.assertFalse(fluid.dygraph.enabled())
with fluid.dygraph.guard():
self.assertTrue(fluid.dygraph.enabled())
var_inp = fluid.dygraph.base.to_variable(np_inp)
mlp = MLP(input_size=2)
out = mlp(var_inp)
dy_out2 = out.numpy()
out.backward()
dy_grad2 = mlp._linear1.weight.gradient()
self.assertFalse(fluid.dygraph.enabled())
self.assertTrue(np.array_equal(dy_out1, dy_out2))
self.assertTrue(np.array_equal(dy_grad1, dy_grad2))
def test_functional_paddle_imperative_dygraph_context(self):
self.assertFalse(paddle.in_dynamic_mode())
paddle.disable_static()
self.assertTrue(paddle.in_dynamic_mode())
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
var_inp = paddle.to_tensor(np_inp)
mlp = MLP(input_size=2)
out = mlp(var_inp)
dy_out1 = out.numpy()
out.backward()
dy_grad1 = mlp._linear1.weight.gradient()
paddle.enable_static()
self.assertFalse(paddle.in_dynamic_mode())
paddle.disable_static()
self.assertTrue(paddle.in_dynamic_mode())
var_inp = paddle.to_tensor(np_inp)
mlp = MLP(input_size=2)
out = mlp(var_inp)
dy_out2 = out.numpy()
out.backward()
dy_grad2 = mlp._linear1.weight.gradient()
paddle.enable_static()
self.assertFalse(paddle.in_dynamic_mode())
self.assertTrue(np.array_equal(dy_out1, dy_out2))
self.assertTrue(np.array_equal(dy_grad1, dy_grad2))
def test_isinstance(self):
var = fluid.layers.data(shape=[1], name='x', dtype='float32')
self.assertTrue(isinstance(var, fluid.Variable))
with fluid.dygraph.guard():
var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
self.assertTrue(isinstance(var_base, core.VarBase))
self.assertTrue(isinstance(var_base, fluid.Variable))
def test_create_VarBase(self):
x = np.ones([2, 2], np.float32)
y = np.zeros([3, 3], np.float32)
t = fluid.Tensor()
t.set(x, fluid.CPUPlace())
with fluid.dygraph.guard():
tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
tmp3 = fluid.dygraph.base.to_variable(x)
tmp4 = fluid.core.VarBase(y)
tmp5 = fluid.core.VarBase(value=x)
tmp6 = fluid.core.VarBase(t)
self.assertTrue(np.array_equal(x, tmp.numpy()))
self.assertTrue(np.array_equal(y, tmp2.numpy()))
self.assertTrue(np.array_equal(x, tmp3.numpy()))
self.assertTrue(np.array_equal(y, tmp4.numpy()))
self.assertTrue(np.array_equal(x, tmp5.numpy()))
self.assertTrue(np.array_equal(x, tmp6.numpy()))
def test_no_grad_guard(self):
data = np.array([[2, 3], [4, 5]]).astype('float32')
with fluid.dygraph.guard():
l0 = fluid.Linear(2, 2)
self.assertTrue(l0.weight._grad_ivar() is None)
l1 = fluid.Linear(2, 2)
with fluid.dygraph.no_grad():
self.assertTrue(l1.weight.stop_gradient is False)
tmp = l1.weight * 2
self.assertTrue(tmp.stop_gradient)
x = fluid.dygraph.to_variable(data)
y = l0(x) + tmp
o = l1(y)
o.backward()
self.assertTrue(tmp._grad_ivar() is None)
self.assertTrue(l0.weight._grad_ivar() is not None)
def test_paddle_imperative_no_grad_guard(self):
data = np.array([[2, 3], [4, 5]]).astype('float32')
with fluid.dygraph.guard():
l0 = fluid.Linear(2, 2)
self.assertTrue(l0.weight._grad_ivar() is None)
l1 = fluid.Linear(2, 2)
with paddle.no_grad():
self.assertTrue(l1.weight.stop_gradient is False)
tmp = l1.weight * 2
self.assertTrue(tmp.stop_gradient)
x = fluid.dygraph.to_variable(data)
y = l0(x) + tmp
o = l1(y)
o.backward()
self.assertTrue(tmp._grad_ivar() is None)
self.assertTrue(l0.weight._grad_ivar() is not None)
def test_sum_op(self):
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient = False
inputs.append(tmp)
ret = fluid.layers.sums(inputs)
loss = fluid.layers.reduce_sum(ret)
loss.backward()
with fluid.dygraph.guard():
inputs2 = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient = False
inputs2.append(tmp)
ret2 = fluid.layers.sums(inputs2)
loss2 = fluid.layers.reduce_sum(ret2)
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
loss2.backward()
self.assertTrue(np.allclose(ret.numpy(), x * 10))
self.assertTrue(np.allclose(inputs[0].gradient(), x))
self.assertTrue(np.allclose(ret2.numpy(), x * 10))
a = inputs2[0].gradient()
self.assertTrue(np.allclose(inputs2[0].gradient(), x))
def test_empty_var(self):
with fluid.dygraph.guard():
cur_program = fluid.Program()
cur_block = cur_program.current_block()
new_variable = cur_block.create_var(
name="X", shape=[-1, 23, 48], dtype='float32')
try:
new_variable.numpy()
except Exception as e:
assert type(e) == ValueError
try:
new_variable.backward()
except Exception as e:
assert type(e) == core.EnforceNotMet
try:
new_variable.clear_gradient()
except Exception as e:
assert type(e) == core.EnforceNotMet
def test_empty_grad(self):
with fluid.dygraph.guard():
x = np.ones([2, 2], np.float32)
new_var = fluid.dygraph.base.to_variable(x)
try:
new_var.gradient()
except Exception as e:
assert type(e) == ValueError
try:
new_var.clear_gradient()
except Exception as e:
assert type(e) == core.EnforceNotMet
with fluid.dygraph.guard():
cur_program = fluid.Program()
cur_block = cur_program.current_block()
new_variable = cur_block.create_var(
name="X", shape=[-1, 23, 48], dtype='float32')
try:
new_variable.gradient()
except Exception as e:
assert type(e) == ValueError
def test_set_persistable(self):
with fluid.dygraph.guard():
x = np.ones([2, 2], np.float32)
new_var = fluid.dygraph.base.to_variable(x)
self.assertFalse(new_var.persistable)
new_var.persistable = True
self.assertTrue(new_var.persistable)
def test_layer(self):
with fluid.dygraph.guard():
cl = core.Layer()
cl.forward([])
l = fluid.Layer("l")
self.assertRaises(NotImplementedError, l.forward, [])
def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
var_inp.stop_gradient = False
l = MyLayer()
x = l(var_inp)[0]
self.assertIsNotNone(x)
dy_out = x.numpy()
x.backward()
dy_grad = l._x_for_debug.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
var_inp2.stop_gradient = False
l2 = MyLayer()
x2 = l2(var_inp2)[0]
self.assertIsNotNone(x2)
dy_out2 = x2.numpy()
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
x2.backward()
dy_grad2 = l2._x_for_debug.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[3], append_batch_size=False)
l = MyLayer()
x = l(inp)[0]
param_grads = fluid.backward.append_backward(
x, parameter_list=[l._x_for_debug.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[x.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad2, static_grad))
def test_mlp(self):
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
mlp = MLP(input_size=2)
out = mlp(var_inp)
dy_out = out.numpy()
out.backward()
dy_grad = mlp._linear1.weight.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
mlp2 = MLP(input_size=2)
out2 = mlp2(var_inp2)
dy_out2 = out2.numpy()
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
out2.backward()
dy_grad2 = mlp2._linear1.weight.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
mlp = MLP(input_size=2)
out = mlp(inp)
param_grads = fluid.backward.append_backward(
out, parameter_list=[mlp._linear1.weight.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[out.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad2, static_grad))
params = mlp.parameters(True)
self.assertEqual("linear_0.w_0", params[0].name)
self.assertEqual("linear_0.b_0", params[1].name)
self.assertEqual("linear_1.w_0", params[2].name)
self.assertEqual("linear_1.b_0", params[3].name)
self.assertEqual(len(params), 4)
sublayers = mlp.sublayers(True)
self.assertEqual(mlp._linear1, sublayers[0])
self.assertEqual(mlp._linear2, sublayers[1])
self.assertEqual(len(sublayers), 2)
def test_gradient_accumulation(self):
def test_single_api(sort_sum_gradient):
fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
x = paddle.to_tensor(5., stop_gradient=False)
for i in range(10):
y = paddle.pow(x, 4.0)
y.backward()
self.assertEqual(x.grad, (i + 1) * 500)
x.clear_gradient()
self.assertEqual(x.grad, 0.)
for i in range(10):
y = paddle.pow(x, 4.0)
y.backward()
self.assertEqual(x.grad, (i + 1) * 500)
x.clear_grad()
self.assertEqual(x.grad, 0.)
def test_simple_net(sort_sum_gradient):
fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
x = paddle.to_tensor(5., stop_gradient=False)
y = paddle.to_tensor(2., stop_gradient=False)
z = paddle.to_tensor(3., stop_gradient=False)
def fun(x, y, z):
loss1 = x * x * y
loss2 = x * z
loss1.backward(retain_graph=True)
loss2.backward(retain_graph=True)
self.assertTrue(np.array_equal(x.grad, [23.]))
self.assertTrue(np.array_equal(y.grad, [25.]))
self.assertTrue(np.array_equal(z.grad, [5.]))
x.clear_grad()
y.clear_grad()
z.clear_grad()
dx = paddle.grad([loss1], x, create_graph=True)[0]
loss = loss1 + loss2 + dx
# loss = x*x*y + x*z + 2*x*y
return loss
loss = fun(x, y, z)
loss.backward(retain_graph=True)
# x.grad = 2*x*y + z + 2*y = 27
self.assertTrue(np.array_equal(x.grad, [27]))
loss.backward(retain_graph=True)
self.assertTrue(np.array_equal(x.grad, [54]))
loss.backward()
self.assertTrue(np.array_equal(x.grad, [81]))
with self.assertRaises(RuntimeError):
loss.backward()
loss1 = x * x * y
loss2 = x * z
dx = paddle.grad([loss1], x, create_graph=True)[0]
loss = loss1 + loss2 + dx
loss.backward()
self.assertTrue(np.array_equal(dx.grad, [1]))
self.assertTrue(np.array_equal(x.grad, [108]))
def test_mlp(sort_sum_gradient):
fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
input_size = 5
paddle.seed(1)
mlp1 = MLP(input_size=input_size)
# generate the gradient of each step
mlp2 = MLP(input_size=input_size)
expected_weight1_grad = 0.
expected_bias1_grad = 0.
expected_weight2_grad = 0.
expected_bias2_grad = 0.
for batch_id in range(100):
x = paddle.uniform([10, input_size])
detach_x = x.detach()
clear_loss = mlp2(detach_x)
clear_loss.backward()
expected_weight1_grad = expected_weight1_grad + mlp2._linear1.weight.grad
expected_bias1_grad = expected_bias1_grad + mlp2._linear1.bias.grad
expected_weight2_grad = expected_weight2_grad + mlp2._linear2.weight.grad
expected_bias2_grad = expected_bias2_grad + mlp2._linear2.bias.grad
loss = mlp1(x)
loss.backward()
self.assertTrue(np.array_equal(loss.grad, [1]))
self.assertTrue(
np.allclose(mlp1._linear1.weight.grad,
expected_weight1_grad))
self.assertTrue(
np.allclose(mlp1._linear1.bias.grad, expected_bias1_grad))
self.assertTrue(
np.allclose(mlp1._linear2.weight.grad,
expected_weight2_grad))
self.assertTrue(
np.allclose(mlp1._linear2.bias.grad, expected_bias2_grad))
mlp2.clear_gradients()
self.assertTrue(np.array_equal(clear_loss.grad, [1]))
if ((batch_id + 1) % 10) == 0:
mlp1.clear_gradients()
expected_weight1_grad = 0.
expected_bias1_grad = 0.
expected_weight2_grad = 0.
expected_bias2_grad = 0.
with fluid.dygraph.guard():
test_single_api(False)
test_single_api(True)
test_simple_net(False)
test_simple_net(True)
test_mlp(False)
test_mlp(True)
def test_dygraph_vs_static(self):
np_inp1 = np.random.rand(4, 3, 3)
np_inp2 = np.random.rand(4, 3, 3)
# dynamic graph
with fluid.dygraph.guard():
inp1 = fluid.dygraph.to_variable(np_inp1)
inp2 = fluid.dygraph.to_variable(np_inp2)
if np.sum(np_inp1) < np.sum(np_inp2):
x = fluid.layers.elementwise_add(inp1, inp2)
else:
x = fluid.layers.elementwise_sub(inp1, inp2)
dygraph_result = x.numpy()
# static graph
with new_program_scope():
inp_data1 = fluid.layers.data(
name='inp1', shape=[3, 3], dtype=np.float32)
inp_data2 = fluid.layers.data(
name='inp2', shape=[3, 3], dtype=np.float32)
a = fluid.layers.expand(
fluid.layers.reshape(
fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
b = fluid.layers.expand(
fluid.layers.reshape(
fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
cond = fluid.layers.less_than(x=a, y=b)
ie = fluid.layers.IfElse(cond)
with ie.true_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_add(d1, d2)
ie.output(d3)
with ie.false_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_sub(d1, d2)
ie.output(d3)
out = ie()
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_result = exe.run(fluid.default_main_program(),
feed={'inp1': np_inp1,
'inp2': np_inp2},
fetch_list=out)[0]
self.assertTrue(np.allclose(dygraph_result, static_result))
def test_rnn(self):
np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]])
np_inp = np_inp.reshape((1, 4, 3))
np_inp = np_inp.astype(np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
simple_rnn = SimpleRNN()
outs, pre_hiddens = simple_rnn.forward(var_inp)
dy_out = outs[3].numpy()
outs[3].backward()
dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
simple_rnn2 = SimpleRNN()
outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
dy_out2 = outs2[3].numpy()
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
outs2[3].backward()
dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[1, 4, 3], append_batch_size=False)
simple_rnn = SimpleRNN()
outs, pre_hiddens = simple_rnn(inp)
param_grads = fluid.backward.append_backward(outs[3])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
feed={inp.name: np_inp},
fetch_list=[
outs[3].name, param_grads[0][1].name,
param_grads[1][1].name, param_grads[2][1].name
])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
def test_layer_attrs(self):
layer = fluid.dygraph.Layer("test")
layer.test_attr = 1
self.assertFalse(hasattr(layer, "whatever"))
self.assertTrue(hasattr(layer, "test_attr"))
self.assertEqual(layer.test_attr, 1)
my_layer = MyLayer()
my_layer.w1 = my_layer.create_parameter([3, 3])
my_layer.add_parameter('w2', None)
self.assertEqual(len(my_layer.parameters()), 1)
self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
my_layer.w1 = None
self.assertEqual(len(my_layer.parameters()), 0)
my_layer.l1 = fluid.dygraph.Linear(3, 3)
self.assertEqual(len(my_layer.sublayers()), 1)
self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
my_layer.l1 = None
self.assertEqual(len(my_layer.sublayers()), 0)
class TestDygraphUtils(unittest.TestCase):
def test_append_activation_in_dygraph_exception(self):
with new_program_scope():
np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
a = fluid.layers.data("a", [10, 20])
func = dygraph_utils._append_activation_in_dygraph
self.assertRaises(AssertionError, func, a, act="sigmoid")
def test_append_activation_in_dygraph1(self):
a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
func = dygraph_utils._append_activation_in_dygraph
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
res1 = func(a, act="hard_sigmoid")
res2 = fluid.layers.hard_sigmoid(a)
self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
def test_append_activation_in_dygraph2(self):
a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
func = dygraph_utils._append_activation_in_dygraph
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
res2 = fluid.layers.sigmoid(a)
self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
def test_append_activation_in_dygraph3(self):
a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
helper = LayerObjectHelper(fluid.unique_name.generate("test"))
func = helper.append_activation
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
res1 = func(a, act="sigmoid", use_cudnn=True)
res2 = fluid.layers.sigmoid(a)
self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
def test_append_activation_in_dygraph_use_mkldnn(self):
a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
helper = LayerHelper(
fluid.unique_name.generate("test"), act="relu", use_mkldnn=True)
func = helper.append_activation
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
res1 = func(a)
res2 = fluid.layers.relu(a)
self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
def test_append_activation_in_dygraph_global_use_mkldnn(self):
a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
helper = LayerHelper(fluid.unique_name.generate("test"), act="relu")
func = helper.append_activation
with fluid.dygraph.guard(fluid.core.CPUPlace()):
a = fluid.dygraph.to_variable(a_np)
fluid.set_flags({'FLAGS_use_mkldnn': True})
try:
res1 = func(a)
finally:
fluid.set_flags({'FLAGS_use_mkldnn': False})
res2 = fluid.layers.relu(a)
self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
def test_append_bias_in_dygraph_exception(self):
with new_program_scope():
np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
a = fluid.layers.data("a", [10, 20])
func = dygraph_utils._append_bias_in_dygraph
self.assertRaises(AssertionError, func, a)
def test_append_bias_in_dygraph(self):
a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
func = dygraph_utils._append_bias_in_dygraph
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
res1 = func(a, bias=a)
res2 = a + a
self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
class TestDygraphGuardWithError(unittest.TestCase):
def test_without_guard(self):
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(np.zeros([10, 10]))
with self.assertRaisesRegexp(TypeError,
"Please use `with fluid.dygraph.guard()"):
y = fluid.layers.matmul(x, x)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()