You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_container_s...

61 lines
2.2 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import numpy as np
class TestImperativeContainerSequential(unittest.TestCase):
def test_sequential(self):
data = np.random.uniform(-1, 1, [5, 10]).astype('float32')
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
model1 = fluid.dygraph.Sequential(
fluid.Linear(10, 1), fluid.Linear(1, 2))
res1 = model1(data)
self.assertListEqual(res1.shape, [5, 2])
model1[1] = fluid.Linear(1, 3)
res1 = model1(data)
self.assertListEqual(res1.shape, [5, 3])
loss1 = fluid.layers.reduce_mean(res1)
loss1.backward()
l1 = fluid.Linear(10, 1)
l2 = fluid.Linear(1, 3)
model2 = fluid.dygraph.Sequential(('l1', l1), ('l2', l2))
self.assertEqual(len(model2), 2)
res2 = model2(data)
self.assertTrue(l1 is model2.l1)
self.assertListEqual(res2.shape, res1.shape)
self.assertEqual(len(model1.parameters()), len(model2.parameters()))
del model2['l2']
self.assertEqual(len(model2), 1)
res2 = model2(data)
self.assertListEqual(res2.shape, [5, 1])
model2.add_sublayer('l3', fluid.Linear(1, 3))
model2.add_sublayer('l4', fluid.Linear(3, 4))
self.assertEqual(len(model2), 3)
res2 = model2(data)
self.assertListEqual(res2.shape, [5, 4])
loss2 = fluid.layers.reduce_mean(res2)
loss2.backward()
if __name__ == '__main__':
unittest.main()