You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.5 KiB
83 lines
2.5 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
import unittest
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dygraph
|
|
from paddle.fluid.dygraph.nn import Linear
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class MLP(fluid.Layer):
|
|
def __init__(self, param_attr=None, bias_attr=None):
|
|
super(MLP, self).__init__()
|
|
|
|
self._linear1 = Linear(784, 10)
|
|
self._linear2 = Linear(10, 10)
|
|
|
|
def forward(self, inputs):
|
|
y = self._linear1(inputs)
|
|
y = self._linear2(y)
|
|
return y
|
|
|
|
|
|
class TestDataParallelStateDict(unittest.TestCase):
|
|
def test_data_parallel_state_dict(self):
|
|
with fluid.dygraph.guard():
|
|
strategy = dygraph.parallel.prepare_context()
|
|
mlp = MLP()
|
|
parallel_mlp = dygraph.parallel.DataParallel(mlp, strategy)
|
|
|
|
single_state = mlp.state_dict()
|
|
parallel_state = parallel_mlp.state_dict()
|
|
|
|
base_para = {}
|
|
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
|
|
) else fluid.CUDAPlace(0)
|
|
for k, v in single_state.items():
|
|
self.assertTrue(k in parallel_state)
|
|
|
|
self.assertTrue(
|
|
np.array_equal(v.numpy(), parallel_state[k].numpy()))
|
|
|
|
base_para[k] = v.numpy()
|
|
|
|
for k, v in parallel_state.items():
|
|
np_t = v.numpy()
|
|
var = v.value().get_tensor()
|
|
var.set(np.zeros_like(np_t), place)
|
|
|
|
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
|
|
|
|
parallel_mlp.set_dict(base_para)
|
|
|
|
parallel_state = parallel_mlp.state_dict()
|
|
|
|
for k, v in parallel_state.items():
|
|
self.assertTrue(np.array_equal(v.numpy(), base_para[k]))
|
|
|
|
parallel_mlp.load_dict(base_para)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|