You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_double_grad.py

374 lines
12 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
import unittest
from unittest import TestCase
import numpy as np
def _dygraph_guard_(func):
def __impl__(*args, **kwargs):
if fluid.in_dygraph_mode():
return func(*args, **kwargs)
else:
with fluid.dygraph.guard():
return func(*args, **kwargs)
return __impl__
dygraph_guard = wrap_decorator(_dygraph_guard_)
def random_var(size, low=-1, high=1, dtype='float32'):
x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
return fluid.dygraph.to_variable(x_np)
class TestDygraphDoubleGrad(TestCase):
def setUp(self):
self.sort_sum_gradient = False
self.shape = [5, 10]
def grad(self,
outputs,
inputs,
grad_outputs=None,
no_grad_vars=None,
retain_graph=None,
create_graph=False,
allow_unused=False):
fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
return fluid.dygraph.grad(
outputs=outputs,
inputs=inputs,
grad_outputs=grad_outputs,
no_grad_vars=no_grad_vars,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=allow_unused)
@dygraph_guard
def test_exception(self):
with self.assertRaises(AssertionError):
self.grad(None, None)
shape = self.shape
with self.assertRaises(AssertionError):
self.grad(1, random_var(shape))
with self.assertRaises(AssertionError):
self.grad(random_var(shape), 1)
with self.assertRaises(AssertionError):
self.grad([1], [random_var(shape)])
with self.assertRaises(AssertionError):
self.grad([random_var(shape)], [1])
with self.assertRaises(AssertionError):
self.grad([random_var(shape), random_var(shape)],
[random_var(shape)], [random_var(shape)])
with self.assertRaises(AssertionError):
self.grad(
[random_var(shape)], [random_var(shape)], no_grad_vars=[1])
with self.assertRaises(AssertionError):
self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
@dygraph_guard
def test_simple_example(self):
x = random_var(self.shape)
x.stop_gradient = False
y = x + 1
for create_graph in [False, True]:
dx, = self.grad(
[x], [x], create_graph=create_graph, retain_graph=True)
self.assertEqual(dx.shape, x.shape)
self.assertTrue(np.all(dx.numpy() == 1))
self.assertNotEqual(dx.stop_gradient, create_graph)
dx_mul_2, = self.grad(
[y, x], [x], create_graph=create_graph, retain_graph=True)
self.assertEqual(dx_mul_2.shape, x.shape)
self.assertTrue(np.all(dx_mul_2.numpy() == 2))
self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)
none_grad, = self.grad(
[x], [y], create_graph=create_graph, allow_unused=True)
self.assertTrue(none_grad is None)
grad_with_none_and_not_none, = self.grad(
[x, y], [y], create_graph=create_graph)
self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
create_graph)
@dygraph_guard
def test_none_one_initial_gradient(self):
numel = 1
for s in self.shape:
numel *= s
half_numel = int(numel / 2)
half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
half_x_negative = np.random.uniform(
low=-2, high=-1, size=[numel - half_numel])
x_np = np.array(list(half_x_positive) + list(half_x_negative)).astype(
'float32')
np.random.shuffle(x_np)
x = fluid.dygraph.to_variable(x_np)
x.stop_gradient = False
alpha = 0.2
y = fluid.layers.leaky_relu(x, alpha=alpha)
y = y * y
z = y * y
x_np = x.numpy()
relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
4).astype('float32')
random_grad_y = random_var(y.shape, low=1, high=2)
random_grad_z = random_var(z.shape, low=1, high=2)
ones_grad_y = np.ones(y.shape).astype('float32')
ones_grad_z = np.ones(z.shape).astype('float32')
original_random_grad_y = random_grad_y.numpy()
original_random_grad_z = random_grad_z.numpy()
for grad_y in [random_grad_y]:
for grad_z in [random_grad_z]:
for create_graph in [False, True]:
dx_actual, = self.grad(
outputs=[y, z],
inputs=[x],
grad_outputs=[grad_y, grad_z],
create_graph=create_graph,
retain_graph=True)
grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
)
grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
)
dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))
if grad_y is not None:
self.assertTrue(grad_y.stop_gradient)
self.assertTrue(
np.array_equal(grad_y.numpy(),
original_random_grad_y))
if grad_z is not None:
self.assertTrue(grad_z.stop_gradient)
self.assertTrue(
np.array_equal(grad_z.numpy(),
original_random_grad_z))
@dygraph_guard
def test_example_with_gradient_accumulation_and_create_graph(self):
x = random_var(self.shape)
x_np = x.numpy()
numel = x_np.size
x.stop_gradient = False
y = fluid.layers.relu(x)
z = y + 1
w = z * z
w_mean = fluid.layers.reduce_mean(w)
del y, z, w
dx_actual, = self.grad([w_mean], [x], create_graph=True)
del w_mean
self.assertFalse(dx_actual.stop_gradient)
# Theoritical result based on math calculation
dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
(x_np > 0) * 2).astype('float32')
self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))
loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
loss.backward(retain_graph=True)
x_grad_actual = x.gradient()
x_grad_expected = (2.0 / float(numel) *
(x_np + dx_expected *
(x_np > 0) * 2 / float(numel))).astype('float32')
self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
for i in range(5):
loss.backward(retain_graph=True)
x_grad_actual = x.gradient()
x_grad_expected = (i + 2) * (2.0 / float(numel) * (
x_np + dx_expected *
(x_np > 0) * 2 / float(numel))).astype('float32')
print(x_grad_actual)
print(x_grad_expected)
self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
@dygraph_guard
def test_example_with_gradient_accumulation_and_no_grad_vars(self):
x = random_var(self.shape)
x_np = x.numpy()
numel = x_np.size
x.stop_gradient = False
y1 = fluid.layers.relu(x)
y2 = fluid.layers.relu(x)
z = y1 + y2
w = z * z
w_mean = fluid.layers.reduce_mean(w)
del y1, z, w
dx_actual, = self.grad(
[w_mean], [x], create_graph=True, no_grad_vars=[y2])
self.assertFalse(y2.stop_gradient)
self.assertFalse(dx_actual.stop_gradient)
dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
(x_np > 0) * 2).astype('float32')
self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))
loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
loss.backward()
x_grad_actual = x.gradient()
x_grad_expected = (2.0 / float(numel) *
(x_np + dx_expected *
(x_np > 0) * 4 / float(numel))).astype('float32')
self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
@dygraph_guard
def test_example_with_gradient_accumulation_and_not_create_graph(self):
x = random_var(self.shape)
x_np = x.numpy()
numel = x_np.size
x.stop_gradient = False
y = fluid.layers.relu(x)
z = y + 1
w = z * z
w_mean = fluid.layers.reduce_mean(w)
del y, z, w
dx_actual, = self.grad([w_mean], [x], create_graph=False)
del w_mean
self.assertTrue(dx_actual.stop_gradient)
dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
(x_np > 0) * 2).astype('float32')
self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))
loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
loss.backward()
x_grad_actual = x.gradient()
x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
def setUp(self):
self.sort_sum_gradient = True
self.shape = [5, 10]
class TestDygraphDoubleGradVisitedUniq(TestCase):
def test_compare(self):
value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
5).astype("float32")
def model_f(input):
linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
for i in range(10):
if i == 0:
out = linear(input)
else:
out = out + linear(input)
return out
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
with fluid.dygraph.guard():
paddle.seed(123)
paddle.framework.random._manual_program_seed(123)
a = fluid.dygraph.to_variable(value)
a.stop_gradient = False
out = model_f(a)
dx = fluid.dygraph.grad(
outputs=[out],
inputs=[a],
create_graph=False,
only_inputs=True,
allow_unused=False)
grad_1 = dx[0].numpy()
with fluid.dygraph.guard():
paddle.seed(123)
paddle.framework.random._manual_program_seed(123)
a = fluid.dygraph.to_variable(value)
a.stop_gradient = False
out = model_f(a)
out.backward()
grad_2 = a.gradient()
self.assertTrue(np.array_equal(grad_1, grad_2))
class TestRaiseNoDoubleGradOp(TestCase):
def raise_no_grad_op(self):
with fluid.dygraph.guard():
x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
x.stop_gradient = False
y = paddle.fluid.layers.group_norm(x, groups=1)
dx = fluid.dygraph.grad(
outputs=[y], inputs=[x], create_graph=True,
retain_graph=True)[0]
loss = fluid.layers.reduce_mean(dx)
loss.backward()
def test_raise(self):
self.assertRaises(RuntimeError, self.raise_no_grad_op)
if __name__ == '__main__':
unittest.main()