You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_gan.py

233 lines
8.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import six
import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid import Conv2D, Pool2D, Linear
from test_imperative_base import new_program_scope
from paddle.fluid.dygraph.base import to_variable
class Discriminator(fluid.Layer):
def __init__(self):
super(Discriminator, self).__init__()
self._fc1 = Linear(1, 32, act='elu')
self._fc2 = Linear(32, 1)
def forward(self, inputs):
x = self._fc1(inputs)
x = self._fc2(x)
return x
class Generator(fluid.Layer):
def __init__(self):
super(Generator, self).__init__()
self._fc1 = Linear(2, 64, act='elu')
self._fc2 = Linear(64, 64, act='elu')
self._fc3 = Linear(64, 1)
def forward(self, inputs):
x = self._fc1(inputs)
x = self._fc2(x)
x = self._fc3(x)
return x
class TestDygraphGAN(unittest.TestCase):
def test_gan_float32(self):
seed = 90
paddle.seed(1)
paddle.framework.random._manual_program_seed(1)
startup = fluid.Program()
discriminate_p = fluid.Program()
generate_p = fluid.Program()
scope = fluid.core.Scope()
with new_program_scope(
main=discriminate_p, startup=startup, scope=scope):
discriminator = Discriminator()
generator = Generator()
img = fluid.layers.data(
name="img", shape=[2, 1], append_batch_size=False)
noise = fluid.layers.data(
name="noise", shape=[2, 2], append_batch_size=False)
d_real = discriminator(img)
d_loss_real = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_real,
label=fluid.layers.fill_constant(
shape=[2, 1], dtype='float32', value=1.0)))
d_fake = discriminator(generator(noise))
d_loss_fake = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake,
label=fluid.layers.fill_constant(
shape=[2, 1], dtype='float32', value=0.0)))
d_loss = d_loss_real + d_loss_fake
sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(d_loss)
with new_program_scope(main=generate_p, startup=startup, scope=scope):
discriminator = Discriminator()
generator = Generator()
noise = fluid.layers.data(
name="noise", shape=[2, 2], append_batch_size=False)
d_fake = discriminator(generator(noise))
g_loss = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake,
label=fluid.layers.fill_constant(
shape=[2, 1], dtype='float32', value=1.0)))
sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(g_loss)
exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0))
static_params = dict()
with fluid.scope_guard(scope):
img = np.ones([2, 1], np.float32)
noise = np.ones([2, 2], np.float32)
exe.run(startup)
static_d_loss = exe.run(discriminate_p,
feed={'img': img,
'noise': noise},
fetch_list=[d_loss])[0]
static_g_loss = exe.run(generate_p,
feed={'noise': noise},
fetch_list=[g_loss])[0]
# generate_p contains all parameters needed.
for param in generate_p.global_block().all_parameters():
static_params[param.name] = np.array(
scope.find_var(param.name).get_tensor())
dy_params = dict()
with fluid.dygraph.guard():
paddle.seed(1)
paddle.framework.random._manual_program_seed(1)
discriminator = Discriminator()
generator = Generator()
sgd = SGDOptimizer(
learning_rate=1e-3,
parameter_list=(
discriminator.parameters() + generator.parameters()))
d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
d_loss_real = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_real, label=to_variable(np.ones([2, 1], np.float32))))
d_fake = discriminator(
generator(to_variable(np.ones([2, 2], np.float32))))
d_loss_fake = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
sgd.minimize(d_loss)
discriminator.clear_gradients()
generator.clear_gradients()
d_fake = discriminator(
generator(to_variable(np.ones([2, 2], np.float32))))
g_loss = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
g_loss.backward()
sgd.minimize(g_loss)
for p in discriminator.parameters():
dy_params[p.name] = p.numpy()
for p in generator.parameters():
dy_params[p.name] = p.numpy()
dy_g_loss = g_loss.numpy()
dy_d_loss = d_loss.numpy()
dy_params2 = dict()
with fluid.dygraph.guard():
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
paddle.seed(1)
paddle.framework.random._manual_program_seed(1)
discriminator2 = Discriminator()
generator2 = Generator()
sgd2 = SGDOptimizer(
learning_rate=1e-3,
parameter_list=(
discriminator2.parameters() + generator2.parameters()))
d_real2 = discriminator2(to_variable(np.ones([2, 1], np.float32)))
d_loss_real2 = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_real2, label=to_variable(np.ones([2, 1], np.float32))))
d_fake2 = discriminator2(
generator2(to_variable(np.ones([2, 2], np.float32))))
d_loss_fake2 = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake2, label=to_variable(np.zeros([2, 1], np.float32))))
d_loss2 = d_loss_real2 + d_loss_fake2
d_loss2.backward()
sgd2.minimize(d_loss2)
discriminator2.clear_gradients()
generator2.clear_gradients()
d_fake2 = discriminator2(
generator2(to_variable(np.ones([2, 2], np.float32))))
g_loss2 = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake2, label=to_variable(np.ones([2, 1], np.float32))))
g_loss2.backward()
sgd2.minimize(g_loss2)
for p in discriminator2.parameters():
dy_params2[p.name] = p.numpy()
for p in generator.parameters():
dy_params2[p.name] = p.numpy()
dy_g_loss2 = g_loss2.numpy()
dy_d_loss2 = d_loss2.numpy()
self.assertEqual(dy_g_loss, static_g_loss)
self.assertEqual(dy_d_loss, static_d_loss)
for k, v in six.iteritems(dy_params):
self.assertTrue(np.allclose(v, static_params[k]))
self.assertEqual(dy_g_loss2, static_g_loss)
self.assertEqual(dy_d_loss2, static_d_loss)
for k, v in six.iteritems(dy_params2):
self.assertTrue(np.allclose(v, static_params[k]))
if __name__ == '__main__':
unittest.main()