You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_partitial_b...

55 lines
1.8 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import numpy as np
class TestImperativePartitialBackward(unittest.TestCase):
def test_partitial_backward(self):
with fluid.dygraph.guard():
x = np.random.randn(2, 4, 5).astype("float32")
x = fluid.dygraph.to_variable(x)
linear1 = fluid.dygraph.Linear(5, 10)
linear2 = fluid.dygraph.Linear(5, 10)
y = linear1(x[:, :2])
z = linear2(x[:, 2:])
loss = fluid.layers.reduce_mean(y)
loss.backward()
for param in linear1.parameters():
self.assertIsNotNone(param._grad_ivar())
for param in linear2.parameters():
self.assertIsNone(param._grad_ivar())
optimizer = fluid.optimizer.AdamOptimizer(parameter_list=(
linear1.parameters() + linear2.parameters()))
_, params_grads = optimizer.minimize(loss)
self.assertListEqual(
sorted([p.name for p in linear1.parameters()]),
sorted([p_g[0].name for p_g in params_grads]))
linear1.clear_gradients()
linear2.clear_gradients()
if __name__ == '__main__':
unittest.main()