You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_save_load.py

928 lines
35 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding, Linear
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.learning_rate_scheduler import LearningRateDecay
from test_imperative_base import new_program_scope
import numpy as np
import six
import paddle
class SimpleLSTMRNN(fluid.Layer):
def __init__(self,
hidden_size,
num_steps,
num_layers=2,
init_scale=0.1,
dropout=None):
super(SimpleLSTMRNN, self).__init__()
self._hidden_size = hidden_size
self._num_layers = num_layers
self._init_scale = init_scale
self._dropout = dropout
self._input = None
self._num_steps = num_steps
self.cell_array = []
self.hidden_array = []
self.weight_1_arr = []
self.weight_2_arr = []
self.bias_arr = []
self.mask_array = []
for i in range(self._num_layers):
weight_1 = self.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale)),
shape=[self._hidden_size * 2, self._hidden_size * 4],
dtype="float32",
default_initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale))
self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
bias_1 = self.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale)),
shape=[self._hidden_size * 4],
dtype="float32",
default_initializer=fluid.initializer.Constant(0.0))
self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
def forward(self, input_embedding, init_hidden=None, init_cell=None):
self.cell_array = []
self.hidden_array = []
for i in range(self._num_layers):
pre_hidden = fluid.layers.slice(
init_hidden, axes=[0], starts=[i], ends=[i + 1])
pre_cell = fluid.layers.slice(
init_cell, axes=[0], starts=[i], ends=[i + 1])
pre_hidden = fluid.layers.reshape(
pre_hidden, shape=[-1, self._hidden_size])
pre_cell = fluid.layers.reshape(
pre_cell, shape=[-1, self._hidden_size])
self.hidden_array.append(pre_hidden)
self.cell_array.append(pre_cell)
res = []
for index in range(self._num_steps):
self._input = fluid.layers.slice(
input_embedding, axes=[1], starts=[index], ends=[index + 1])
self._input = fluid.layers.reshape(
self._input, shape=[-1, self._hidden_size])
for k in range(self._num_layers):
pre_hidden = self.hidden_array[k]
pre_cell = self.cell_array[k]
weight_1 = self.weight_1_arr[k]
bias = self.bias_arr[k]
nn = fluid.layers.concat([self._input, pre_hidden], 1)
gate_input = fluid.layers.matmul(x=nn, y=weight_1)
gate_input = fluid.layers.elementwise_add(gate_input, bias)
i, j, f, o = fluid.layers.split(
gate_input, num_or_sections=4, dim=-1)
c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
i) * fluid.layers.tanh(j)
m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self.hidden_array[k] = m
self.cell_array[k] = c
self._input = m
if self._dropout is not None and self._dropout > 0.0:
self._input = fluid.layers.dropout(
self._input,
dropout_prob=self._dropout,
dropout_implementation='upscale_in_train')
res.append(
fluid.layers.reshape(
self._input, shape=[1, -1, self._hidden_size]))
real_res = fluid.layers.concat(res, 0)
real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_hidden = fluid.layers.reshape(
last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
last_cell = fluid.layers.concat(self.cell_array, 1)
last_cell = fluid.layers.reshape(
last_cell, shape=[-1, self._num_layers, self._hidden_size])
last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
return real_res, last_hidden, last_cell
class PtbModel(fluid.Layer):
def __init__(self,
hidden_size,
vocab_size,
num_layers=2,
num_steps=20,
init_scale=0.1,
dropout=None):
super(PtbModel, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.init_scale = init_scale
self.num_layers = num_layers
self.num_steps = num_steps
self.dropout = dropout
self.simple_lstm_rnn = SimpleLSTMRNN(
hidden_size,
num_steps,
num_layers=num_layers,
init_scale=init_scale,
dropout=dropout)
self.embedding = Embedding(
size=[vocab_size, hidden_size],
dtype='float32',
is_sparse=False,
param_attr=fluid.ParamAttr(
name='embedding_para',
initializer=fluid.initializer.UniformInitializer(
low=-init_scale, high=init_scale)))
self.softmax_weight = self.create_parameter(
attr=fluid.ParamAttr(),
shape=[self.hidden_size, self.vocab_size],
dtype="float32",
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
self.softmax_bias = self.create_parameter(
attr=fluid.ParamAttr(),
shape=[self.vocab_size],
dtype="float32",
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
def forward(self, input, label, init_hidden, init_cell):
init_h = fluid.layers.reshape(
init_hidden, shape=[self.num_layers, -1, self.hidden_size])
init_c = fluid.layers.reshape(
init_cell, shape=[self.num_layers, -1, self.hidden_size])
x_emb = self.embedding(input)
x_emb = fluid.layers.reshape(
x_emb, shape=[-1, self.num_steps, self.hidden_size])
if self.dropout is not None and self.dropout > 0.0:
x_emb = fluid.layers.dropout(
x_emb,
dropout_prob=self.drop_out,
dropout_implementation='upscale_in_train')
rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
init_c)
rnn_out = fluid.layers.reshape(
rnn_out, shape=[-1, self.num_steps, self.hidden_size])
projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False)
loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
loss = fluid.layers.reduce_mean(loss, dim=[0])
loss = fluid.layers.reduce_sum(loss)
return loss, last_hidden, last_cell
class TestDygraphPtbRnn(unittest.TestCase):
def setUp(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [1.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
new_lr = 1.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(batch_num):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param.numpy()
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
if i == batch_num - 1:
for param in ptb_model.parameters():
dy_param_updated[param.name] = param.numpy()
# check optimizer
self.opti_dict = adam.state_dict()
self.base_opti = {}
for k, v in self.opti_dict.items():
if isinstance(v, core.VarBase):
self.base_opti[v.name] = v.numpy()
self.assertTrue(np.sum(np.abs(v.numpy())) != 0)
else:
self.base_opti[k] = v
fluid.save_dygraph(self.opti_dict, "./test_dy")
self.state_dict = ptb_model.state_dict()
self.model_base = {}
for k, v in self.state_dict.items():
np_t = v.numpy()
self.model_base[k] = np_t
fluid.save_dygraph(self.state_dict, "./test_dy")
def testLoadAndSetVarBase(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [1.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
new_lr = 1.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(batch_num):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param.numpy()
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
if i == batch_num - 1:
for param in ptb_model.parameters():
dy_param_updated[param.name] = param.numpy()
# check optimizer
opti_dict = adam.state_dict()
# set to zero
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
np_t = v.numpy()
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
if isinstance(adam._learning_rate, LearningRateDecay):
adam._learning_rate.step_num = 0
para_state_dict, opti_state_dict = fluid.load_dygraph("./test_dy")
adam.set_state_dict(opti_state_dict)
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name]))
else:
self.assertEqual(v, self.base_opti[k])
# check parameter
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
np_t = v.numpy()
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
ptb_model.set_state_dict(stat_dict=para_state_dict)
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testSetVariable(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [1.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
new_lr = 1.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(batch_num):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param.numpy()
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
if i == batch_num - 1:
for param in ptb_model.parameters():
dy_param_updated[param.name] = param.numpy()
# check optimizer
opti_dict = adam.state_dict()
# set to zero
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
np_t = v.numpy()
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
if isinstance(adam._learning_rate, LearningRateDecay):
adam._learning_rate.step_num = 0
adam.set_state_dict(self.opti_dict)
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name]))
else:
self.assertEqual(v, self.base_opti[k])
# check parameter
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
np_t = v.numpy()
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
ptb_model.set_state_dict(self.state_dict)
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testSetNumpy(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [1.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
new_lr = 1.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(batch_num):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param.numpy()
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
if i == batch_num - 1:
for param in ptb_model.parameters():
dy_param_updated[param.name] = param.numpy()
# check optimizer
opti_dict = adam.state_dict()
np_opti_dict = {}
# set to zero
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
np_t = v.numpy()
np_opti_dict[v.name] = np_t
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
else:
np_opti_dict[k] = v
if isinstance(adam._learning_rate, LearningRateDecay):
adam._learning_rate.step_num = 0
adam.set_state_dict(np_opti_dict)
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if isinstance(v, core.VarBase):
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name]))
else:
self.assertEqual(v, self.base_opti[k])
# check parameter
state_dict = ptb_model.state_dict()
np_state_dict = {}
for k, v in state_dict.items():
np_t = v.numpy()
np_state_dict[k] = np_t
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
ptb_model.set_state_dict(np_state_dict)
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testSetVariableBeforeTrain(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=0.0,
beta1=0.8,
beta2=0.6,
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
adam.set_state_dict(self.opti_dict)
ptb_model.set_state_dict(self.state_dict)
for i in range(1):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if k == "global_step":
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] + 1))
if k.find("beta1_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta1))
if k.find("beta2_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta2))
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testLoadAndSetVarBaseBeforeTrain(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [0.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
# set lr to zero not update parameter
new_lr = 0.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=0.0,
beta1=0.8,
beta2=0.6,
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
state_dict, opti_dict = fluid.load_dygraph("./test_dy")
adam.set_state_dict(opti_dict)
ptb_model.set_state_dict(state_dict)
for i in range(1):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if k == "global_step":
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] + 1))
if k.find("beta1_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta1))
if k.find("beta2_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta2))
# check parameter
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testSetNumpyBeforeTrain(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [0.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
# set lr to 0.0, not update parameter
new_lr = 0.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
beta1=0.8,
beta2=0.6,
parameter_list=ptb_model.parameters())
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
np_opti_dict = {}
np_state_dict = {}
for k, v in self.opti_dict.items():
if isinstance(v, core.VarBase):
np_opti_dict[v.name] = v.numpy()
else:
np_opti_dict[k] = v
for k, v in self.state_dict.items():
np_state_dict[k] = v.numpy()
adam.set_state_dict(np_opti_dict)
ptb_model.set_state_dict(np_state_dict)
for i in range(1):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
dy_loss.backward()
adam.minimize(dy_loss)
ptb_model.clear_gradients()
opti_dict = adam.state_dict()
for k, v in opti_dict.items():
if k == "global_step":
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] + 1))
if k.find("beta1_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta1))
if k.find("beta2_pow_acc_0") > 0:
self.assertTrue(
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta2))
# check parameter
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testOnlyLoadParams(self):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'))
self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdopt'))
def test_load_compatible_with_keep_name_table(self):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'), keep_name_table=True)
self.assertTrue(para_state_dict != None)
self.assertTrue(opti_state_dict == None)
if __name__ == '__main__':
unittest.main()