You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_index_select_op.py

136 lines
5.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestIndexSelectOp(OpTest):
def setUp(self):
self.op_type = "index_select"
self.init_dtype_type()
index_np = np.random.randint(
low=0, high=self.x_shape[self.dim], size=self.index_size)
x_np = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {'X': x_np, 'Index': index_np}
self.attrs = {'dim': self.dim}
outer_loop = np.prod(self.x_shape[:self.dim])
x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
x_np_reshape = np.reshape(x_np, tuple(x_reshape))
out_list = []
for i in range(outer_loop):
for j in range(self.index_size):
out_list.append(x_np_reshape[i, index_np[j]])
self.out_shape = list(self.x_shape)
self.out_shape[self.dim] = self.index_size
self.out_shape = tuple(self.out_shape)
out = np.reshape(out_list, self.out_shape)
self.outputs = {'Out': out}
def init_dtype_type(self):
self.dim = 1
self.x_type = np.float64
self.index_type = np.int64
self.x_shape = (100, 4, 5)
self.index_size = 100
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
class TestIndexSelectOpCase2(TestIndexSelectOp):
def init_dtype_type(self):
self.x_type = np.float32
self.index_type = np.int32
self.dim = -2
self.x_shape = (10, 10, 4, 10)
self.index_size = 10
class TestIndexSelectAPI(unittest.TestCase):
def input_data(self):
self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]])
self.data_index = np.array([0, 1, 1]).astype('int32')
def test_index_select_api(self):
self.input_data()
# case 1:
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[-1, 4])
index = fluid.layers.data(
name='index', shape=[3], dtype='int32', append_batch_size=False)
z = paddle.index_select(x, index, axis=1)
exe = fluid.Executor(fluid.CPUPlace())
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
# case 2:
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[-1, 4])
index = fluid.layers.data(
name='index', shape=[3], dtype='int32', append_batch_size=False)
z = paddle.index_select(x, index)
exe = fluid.Executor(fluid.CPUPlace())
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array(
[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
def test_dygraph_api(self):
self.input_data()
# case 1:
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(self.data_x)
index = fluid.dygraph.to_variable(self.data_index)
z = paddle.index_select(x, index)
np_z = z.numpy()
expect_out = np.array(
[[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]])
self.assertTrue(np.allclose(expect_out, np_z))
# case 2:
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(self.data_x)
index = fluid.dygraph.to_variable(self.data_index)
z = paddle.index_select(x, index, axis=1)
np_z = z.numpy()
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]])
self.assertTrue(np.allclose(expect_out, np_z))
if __name__ == '__main__':
unittest.main()