You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_inplace.py

301 lines
10 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
class TestInplace(unittest.TestCase):
def test_forward_version(self):
with paddle.fluid.dygraph.guard():
var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
self.assertEqual(var.inplace_version, 0)
var[0] = 1.1
self.assertEqual(var.inplace_version, 1)
paddle.assign(paddle.ones(shape=[3]), var)
# NOTE(liym27): assign(input, output) is an inplace operation for output.
# There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
self.assertEqual(var.inplace_version, 2)
var[2] = 3
self.assertEqual(var.inplace_version, 3)
def test_backward_error(self):
# It raises an error because the inplace operator will result
# in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
# Here, the gradient computation will use the value of var_b
var_c = var_b**2
var_b[1:2] = 3.3 # var_b is modified inplace after using it
var_d = var_b**2
loss = paddle.nn.functional.relu(var_c + var_d)
with self.assertRaisesRegexp(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".
format(1, 0)):
loss.backward()
def test_backward_success_1(self):
# var_b is modified inplace before using it, the inplace operator doesn't result
# in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
var_b[1:2] = 3 # var_b is modified inplace before using it
# Here, the gradient computation will use the value of var_b
var_c = var_b**2
loss = var_c.sum()
loss.backward()
def test_backward_success_2(self):
# Although var_b is modified inplace after using it, it does not used in gradient computation.
# The inplace operator doesn't result in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
var_b[1:2] = 3 # var_b is modified inplace before using it
var_c = var_b + var_b # Here, the grad op of sum doesn't use the value of var_b
loss = var_c.sum()
var_b[1:2] = 3 # var_b is modified inplace after using it
loss.backward()
class TestDygraphInplace(unittest.TestCase):
def setUp(self):
self.init_data()
def init_data(self):
self.input_var_numpy = np.random.rand(2, 3, 1)
self.dtype = "float32"
def non_inplace_api_processing(self, var):
return paddle.squeeze(var)
def inplace_api_processing(self, var):
return paddle.squeeze_(var)
def test_inplace_api(self):
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
inplace_var = self.inplace_api_processing(var)
self.assertTrue(id(var) == id(inplace_var))
inplace_var[0] = 2.
self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))
def test_forward_version(self):
with paddle.fluid.dygraph.guard():
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
self.assertEqual(var.inplace_version, 0)
inplace_var = self.inplace_api_processing(var)
self.assertEqual(var.inplace_version, 1)
inplace_var[0] = 2.
self.assertEqual(var.inplace_version, 2)
inplace_var = self.inplace_api_processing(inplace_var)
self.assertEqual(var.inplace_version, 3)
def test_leaf_inplace_var_error(self):
with paddle.fluid.dygraph.guard():
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var.stop_gradient = False
def leaf_inplace_error():
self.inplace_api_processing(var)
self.assertRaises(ValueError, leaf_inplace_error)
def test_backward_error(self):
# It raises an error because the inplace operator will result
# in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var_a.stop_gradient = False
var_b = var_a**2
# Here, the gradient computation will use the value of var_b
var_c = var_b**2
self.inplace_api_processing(var_b)
loss = paddle.nn.functional.relu(var_c)
with self.assertRaisesRegexp(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".
format(1, 0)):
loss.backward()
def test_backward_success_1(self):
# var_b is modified inplace before using it, the inplace operator doesn't result
# in incorrect gradient computation.
grad_var_a, grad_var_a_inplace = 0, 1
with paddle.fluid.dygraph.guard():
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var_a.stop_gradient = False
var_b = var_a**2
var_c = self.inplace_api_processing(
var_b) # var_b is modified inplace before using it
# Here, the gradient computation will use the value of var_b
var_d = var_c**2
loss = var_d.sum()
loss.backward()
grad_var_a_inplace = var_a.grad
with paddle.fluid.dygraph.guard():
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var_a.stop_gradient = False
var_b = var_a**2
var_c = self.non_inplace_api_processing(var_b)
var_d = var_c**2
loss = var_d.sum()
loss.backward()
grad_var_a = var_a.grad
self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))
def test_backward_success_2(self):
# Although var_b is modified inplace after using it, it does not used in gradient computation.
# The inplace operator doesn't result in incorrect gradient computation.
grad_var_a, grad_var_a_inplace = 0, 1
with paddle.fluid.dygraph.guard():
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var_a.stop_gradient = False
var_b = var_a**2
var_c = self.inplace_api_processing(
var_b) # var_b is modified inplace before using it
var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b
loss = var_d.sum()
loss.backward()
grad_var_a_inplace = var_a.grad
with paddle.fluid.dygraph.guard():
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
var_a.stop_gradient = False
var_b = var_a**2
var_c = self.non_inplace_api_processing(
var_b) # var_b is modified inplace before using it
var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b
loss = var_d.sum()
loss.backward()
grad_var_a = var_a.grad
self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))
class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.unsqueeze(var, -1)
def inplace_api_processing(self, var):
return paddle.unsqueeze_(var, -1)
class TestDygraphInplaceReshape(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.reshape(var, [-1])
def inplace_api_processing(self, var):
return paddle.reshape_(var, [-1])
class TestDygraphInplaceScatter(TestDygraphInplace):
def init_data(self):
self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
self.dtype = "float32"
def non_inplace_api_processing(self, var):
index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
updates = paddle.to_tensor(
[[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
return paddle.scatter(var, index, updates, overwrite=False)
def inplace_api_processing(self, var):
index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
updates = paddle.to_tensor(
[[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
return paddle.scatter_(var, index, updates, overwrite=False)
class TestDygraphInplaceElu(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.nn.functional.elu(var)
def inplace_api_processing(self, var):
return paddle.nn.functional.elu_(var)
class TestDygraphInplaceRelu(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.nn.functional.relu(var)
def inplace_api_processing(self, var):
return paddle.nn.functional.relu_(var)
class TestDygraphInplaceSoftmax(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.nn.functional.softmax(var)
def inplace_api_processing(self, var):
return paddle.nn.functional.softmax_(var)
class TestDygraphInplaceTanh(TestDygraphInplace):
def non_inplace_api_processing(self, var):
return paddle.tanh(var)
def inplace_api_processing(self, var):
return paddle.tanh_(var)
if __name__ == '__main__':
unittest.main()