You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
10 KiB
301 lines
10 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class TestInplace(unittest.TestCase):
|
|
def test_forward_version(self):
|
|
with paddle.fluid.dygraph.guard():
|
|
var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
|
|
self.assertEqual(var.inplace_version, 0)
|
|
|
|
var[0] = 1.1
|
|
self.assertEqual(var.inplace_version, 1)
|
|
|
|
paddle.assign(paddle.ones(shape=[3]), var)
|
|
|
|
# NOTE(liym27): assign(input, output) is an inplace operation for output.
|
|
# There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
|
|
self.assertEqual(var.inplace_version, 2)
|
|
|
|
var[2] = 3
|
|
self.assertEqual(var.inplace_version, 3)
|
|
|
|
def test_backward_error(self):
|
|
# It raises an error because the inplace operator will result
|
|
# in incorrect gradient computation.
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
|
|
# Here, the gradient computation will use the value of var_b
|
|
var_c = var_b**2
|
|
var_b[1:2] = 3.3 # var_b is modified inplace after using it
|
|
|
|
var_d = var_b**2
|
|
|
|
loss = paddle.nn.functional.relu(var_c + var_d)
|
|
with self.assertRaisesRegexp(
|
|
RuntimeError,
|
|
"received tensor_version:{} != wrapper_version_snapshot:{}".
|
|
format(1, 0)):
|
|
loss.backward()
|
|
|
|
def test_backward_success_1(self):
|
|
# var_b is modified inplace before using it, the inplace operator doesn't result
|
|
# in incorrect gradient computation.
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
var_b[1:2] = 3 # var_b is modified inplace before using it
|
|
|
|
# Here, the gradient computation will use the value of var_b
|
|
var_c = var_b**2
|
|
loss = var_c.sum()
|
|
loss.backward()
|
|
|
|
def test_backward_success_2(self):
|
|
# Although var_b is modified inplace after using it, it does not used in gradient computation.
|
|
# The inplace operator doesn't result in incorrect gradient computation.
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
|
|
var_b[1:2] = 3 # var_b is modified inplace before using it
|
|
|
|
var_c = var_b + var_b # Here, the grad op of sum doesn't use the value of var_b
|
|
loss = var_c.sum()
|
|
|
|
var_b[1:2] = 3 # var_b is modified inplace after using it
|
|
|
|
loss.backward()
|
|
|
|
|
|
class TestDygraphInplace(unittest.TestCase):
|
|
def setUp(self):
|
|
self.init_data()
|
|
|
|
def init_data(self):
|
|
self.input_var_numpy = np.random.rand(2, 3, 1)
|
|
self.dtype = "float32"
|
|
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.squeeze(var)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.squeeze_(var)
|
|
|
|
def test_inplace_api(self):
|
|
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
inplace_var = self.inplace_api_processing(var)
|
|
self.assertTrue(id(var) == id(inplace_var))
|
|
|
|
inplace_var[0] = 2.
|
|
self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))
|
|
|
|
def test_forward_version(self):
|
|
with paddle.fluid.dygraph.guard():
|
|
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
self.assertEqual(var.inplace_version, 0)
|
|
|
|
inplace_var = self.inplace_api_processing(var)
|
|
self.assertEqual(var.inplace_version, 1)
|
|
|
|
inplace_var[0] = 2.
|
|
self.assertEqual(var.inplace_version, 2)
|
|
|
|
inplace_var = self.inplace_api_processing(inplace_var)
|
|
self.assertEqual(var.inplace_version, 3)
|
|
|
|
def test_leaf_inplace_var_error(self):
|
|
with paddle.fluid.dygraph.guard():
|
|
var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var.stop_gradient = False
|
|
|
|
def leaf_inplace_error():
|
|
self.inplace_api_processing(var)
|
|
|
|
self.assertRaises(ValueError, leaf_inplace_error)
|
|
|
|
def test_backward_error(self):
|
|
# It raises an error because the inplace operator will result
|
|
# in incorrect gradient computation.
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
|
|
# Here, the gradient computation will use the value of var_b
|
|
var_c = var_b**2
|
|
self.inplace_api_processing(var_b)
|
|
|
|
loss = paddle.nn.functional.relu(var_c)
|
|
with self.assertRaisesRegexp(
|
|
RuntimeError,
|
|
"received tensor_version:{} != wrapper_version_snapshot:{}".
|
|
format(1, 0)):
|
|
loss.backward()
|
|
|
|
def test_backward_success_1(self):
|
|
# var_b is modified inplace before using it, the inplace operator doesn't result
|
|
# in incorrect gradient computation.
|
|
grad_var_a, grad_var_a_inplace = 0, 1
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
var_c = self.inplace_api_processing(
|
|
var_b) # var_b is modified inplace before using it
|
|
|
|
# Here, the gradient computation will use the value of var_b
|
|
var_d = var_c**2
|
|
loss = var_d.sum()
|
|
loss.backward()
|
|
grad_var_a_inplace = var_a.grad
|
|
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
var_c = self.non_inplace_api_processing(var_b)
|
|
var_d = var_c**2
|
|
loss = var_d.sum()
|
|
loss.backward()
|
|
grad_var_a = var_a.grad
|
|
|
|
self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))
|
|
|
|
def test_backward_success_2(self):
|
|
# Although var_b is modified inplace after using it, it does not used in gradient computation.
|
|
# The inplace operator doesn't result in incorrect gradient computation.
|
|
grad_var_a, grad_var_a_inplace = 0, 1
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
|
|
var_c = self.inplace_api_processing(
|
|
var_b) # var_b is modified inplace before using it
|
|
|
|
var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b
|
|
loss = var_d.sum()
|
|
|
|
loss.backward()
|
|
grad_var_a_inplace = var_a.grad
|
|
|
|
with paddle.fluid.dygraph.guard():
|
|
var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
|
|
var_a.stop_gradient = False
|
|
|
|
var_b = var_a**2
|
|
|
|
var_c = self.non_inplace_api_processing(
|
|
var_b) # var_b is modified inplace before using it
|
|
|
|
var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b
|
|
loss = var_d.sum()
|
|
|
|
loss.backward()
|
|
grad_var_a = var_a.grad
|
|
self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))
|
|
|
|
|
|
class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.unsqueeze(var, -1)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.unsqueeze_(var, -1)
|
|
|
|
|
|
class TestDygraphInplaceReshape(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.reshape(var, [-1])
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.reshape_(var, [-1])
|
|
|
|
|
|
class TestDygraphInplaceScatter(TestDygraphInplace):
|
|
def init_data(self):
|
|
self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
|
|
self.dtype = "float32"
|
|
|
|
def non_inplace_api_processing(self, var):
|
|
index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
|
|
updates = paddle.to_tensor(
|
|
[[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
|
|
|
|
return paddle.scatter(var, index, updates, overwrite=False)
|
|
|
|
def inplace_api_processing(self, var):
|
|
index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
|
|
updates = paddle.to_tensor(
|
|
[[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
|
|
|
|
return paddle.scatter_(var, index, updates, overwrite=False)
|
|
|
|
|
|
class TestDygraphInplaceElu(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.nn.functional.elu(var)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.nn.functional.elu_(var)
|
|
|
|
|
|
class TestDygraphInplaceRelu(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.nn.functional.relu(var)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.nn.functional.relu_(var)
|
|
|
|
|
|
class TestDygraphInplaceSoftmax(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.nn.functional.softmax(var)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.nn.functional.softmax_(var)
|
|
|
|
|
|
class TestDygraphInplaceTanh(TestDygraphInplace):
|
|
def non_inplace_api_processing(self, var):
|
|
return paddle.tanh(var)
|
|
|
|
def inplace_api_processing(self, var):
|
|
return paddle.tanh_(var)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|