You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
4.5 KiB
162 lines
4.5 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import unittest
|
|
import numpy as np
|
|
|
|
|
|
def run_static(x_np, dtype, op_str, use_gpu=False):
|
|
paddle.enable_static()
|
|
startup_program = fluid.Program()
|
|
main_program = fluid.Program()
|
|
place = paddle.CPUPlace()
|
|
if use_gpu and fluid.core.is_compiled_with_cuda():
|
|
place = paddle.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
with fluid.program_guard(main_program, startup_program):
|
|
x = paddle.fluid.data(name='x', shape=x_np.shape, dtype=dtype)
|
|
res = getattr(paddle.tensor, op_str)(x)
|
|
exe.run(startup_program)
|
|
static_result = exe.run(main_program,
|
|
feed={'x': x_np},
|
|
fetch_list=[res])
|
|
return static_result
|
|
|
|
|
|
def run_dygraph(x_np, op_str, use_gpu=True):
|
|
place = paddle.CPUPlace()
|
|
if use_gpu and fluid.core.is_compiled_with_cuda():
|
|
place = paddle.CUDAPlace(0)
|
|
paddle.disable_static(place)
|
|
x = paddle.to_tensor(x_np)
|
|
dygraph_result = getattr(paddle.tensor, op_str)(x)
|
|
return dygraph_result
|
|
|
|
|
|
def np_data_generator(low, high, np_shape, type, sv_list, op_str, *args,
|
|
**kwargs):
|
|
x_np = np.random.uniform(low, high, np_shape).astype(getattr(np, type))
|
|
# x_np.shape[0] >= len(sv_list)
|
|
if type in ['float16', 'float32', 'float64']:
|
|
for i, v in enumerate(sv_list):
|
|
x_np[i] = v
|
|
ori_shape = x_np.shape
|
|
x_np = x_np.reshape((np.product(ori_shape), ))
|
|
np.random.shuffle(x_np)
|
|
x_np = x_np.reshape(ori_shape)
|
|
result_np = getattr(np, op_str)(x_np)
|
|
return x_np, result_np
|
|
|
|
|
|
TEST_META_DATA = [
|
|
{
|
|
'low': 0.1,
|
|
'high': 1,
|
|
'np_shape': [8, 17, 5, 6, 7],
|
|
'type': 'float16',
|
|
'sv_list': [np.inf, np.nan]
|
|
},
|
|
{
|
|
'low': 0.1,
|
|
'high': 1,
|
|
'np_shape': [11, 17],
|
|
'type': 'float32',
|
|
'sv_list': [np.inf, np.nan]
|
|
},
|
|
{
|
|
'low': 0.1,
|
|
'high': 1,
|
|
'np_shape': [2, 3, 4, 5],
|
|
'type': 'float64',
|
|
'sv_list': [np.inf, np.nan]
|
|
},
|
|
{
|
|
'low': 0,
|
|
'high': 100,
|
|
'np_shape': [11, 17, 10],
|
|
'type': 'int32',
|
|
'sv_list': [np.inf, np.nan]
|
|
},
|
|
{
|
|
'low': 0,
|
|
'high': 999,
|
|
'np_shape': [132],
|
|
'type': 'int64',
|
|
'sv_list': [np.inf, np.nan]
|
|
},
|
|
]
|
|
|
|
|
|
def test(test_case, op_str, use_gpu=False):
|
|
for meta_data in TEST_META_DATA:
|
|
meta_data = dict(meta_data)
|
|
meta_data['op_str'] = op_str
|
|
x_np, result_np = np_data_generator(**meta_data)
|
|
static_result = run_static(x_np, meta_data['type'], op_str, use_gpu)
|
|
dygraph_result = run_dygraph(x_np, op_str, use_gpu)
|
|
test_case.assertTrue((static_result == result_np).all())
|
|
test_case.assertTrue((dygraph_result.numpy() == result_np).all())
|
|
|
|
|
|
class TestCPUNormal(unittest.TestCase):
|
|
def test_inf(self):
|
|
test(self, 'isinf')
|
|
|
|
def test_nan(self):
|
|
test(self, 'isnan')
|
|
|
|
def test_finite(self):
|
|
test(self, 'isfinite')
|
|
|
|
|
|
class TestCUDANormal(unittest.TestCase):
|
|
def test_inf(self):
|
|
test(self, 'isinf', True)
|
|
|
|
def test_nan(self):
|
|
test(self, 'isnan', True)
|
|
|
|
def test_finite(self):
|
|
test(self, 'isfinite', True)
|
|
|
|
|
|
class TestError(unittest.TestCase):
|
|
def test_bad_input(self):
|
|
paddle.enable_static()
|
|
with fluid.program_guard(fluid.Program()):
|
|
|
|
def test_isinf_bad_x():
|
|
x = [1, 2, 3]
|
|
result = paddle.tensor.isinf(x)
|
|
|
|
self.assertRaises(TypeError, test_isinf_bad_x)
|
|
|
|
def test_isnan_bad_x():
|
|
x = [1, 2, 3]
|
|
result = paddle.tensor.isnan(x)
|
|
|
|
self.assertRaises(TypeError, test_isnan_bad_x)
|
|
|
|
def test_isfinite_bad_x():
|
|
x = [1, 2, 3]
|
|
result = paddle.tensor.isfinite(x)
|
|
|
|
self.assertRaises(TypeError, test_isfinite_bad_x)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|