You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
4.2 KiB
141 lines
4.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def ref_logsumexp(x, axis=None, keepdim=False, reduce_all=False):
|
|
if isinstance(axis, int):
|
|
axis = (axis, )
|
|
elif isinstance(axis, list):
|
|
axis = tuple(axis)
|
|
if reduce_all:
|
|
axis = None
|
|
out = np.log(np.exp(x).sum(axis=axis, keepdims=keepdim))
|
|
return out
|
|
|
|
|
|
class TestLogsumexp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'logsumexp'
|
|
self.shape = [2, 3, 4, 5]
|
|
self.dtype = 'float64'
|
|
self.axis = [-1]
|
|
self.keepdim = False
|
|
self.reduce_all = False
|
|
self.set_attrs()
|
|
|
|
np.random.seed(10)
|
|
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
|
|
out = ref_logsumexp(x, self.axis, self.keepdim, self.reduce_all)
|
|
|
|
self.inputs = {'X': x}
|
|
self.outputs = {'Out': out}
|
|
self.attrs = {
|
|
'axis': self.axis,
|
|
'keepdim': self.keepdim,
|
|
'reduce_all': self.reduce_all
|
|
}
|
|
|
|
def set_attrs(self):
|
|
pass
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['Out'])
|
|
|
|
|
|
class TestLogsumexp_shape(TestLogsumexp):
|
|
def set_attrs(self):
|
|
self.shape = [4, 5, 6]
|
|
|
|
|
|
class TestLogsumexp_axis(TestLogsumexp):
|
|
def set_attrs(self):
|
|
self.axis = [0, -1]
|
|
|
|
|
|
class TestLogsumexp_axis_all(TestLogsumexp):
|
|
def set_attrs(self):
|
|
self.axis = [0, 1, 2, 3]
|
|
|
|
|
|
class TestLogsumexp_keepdim(TestLogsumexp):
|
|
def set_attrs(self):
|
|
self.keepdim = True
|
|
|
|
|
|
class TestLogsumexp_reduce_all(TestLogsumexp):
|
|
def set_attrs(self):
|
|
self.reduce_all = True
|
|
|
|
|
|
class TestLogsumexpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with paddle.static.program_guard(paddle.static.Program()):
|
|
self.assertRaises(TypeError, paddle.logsumexp, 1)
|
|
x1 = paddle.fluid.data(name='x1', shape=[120], dtype="int32")
|
|
self.assertRaises(TypeError, paddle.logsumexp, x1)
|
|
|
|
|
|
class TestLogsumexpAPI(unittest.TestCase):
|
|
def setUp(self):
|
|
self.shape = [2, 3, 4, 5]
|
|
self.x = np.random.uniform(-1, 1, self.shape).astype(np.float32)
|
|
self.place = paddle.CUDAPlace(0) if paddle.fluid.core.is_compiled_with_cuda() \
|
|
else paddle.CPUPlace()
|
|
|
|
def api_case(self, axis=None, keepdim=False):
|
|
out_ref = ref_logsumexp(self.x, axis, keepdim)
|
|
with paddle.static.program_guard(paddle.static.Program()):
|
|
x = paddle.fluid.data('X', self.shape)
|
|
out = paddle.logsumexp(x, axis, keepdim)
|
|
exe = paddle.static.Executor(self.place)
|
|
res = exe.run(feed={'X': self.x}, fetch_list=[out])
|
|
self.assertTrue(np.allclose(res[0], out_ref))
|
|
|
|
paddle.disable_static(self.place)
|
|
x = paddle.to_tensor(self.x)
|
|
out = paddle.logsumexp(x, axis, keepdim)
|
|
self.assertTrue(np.allclose(out.numpy(), out_ref))
|
|
paddle.enable_static()
|
|
|
|
def test_api(self):
|
|
self.api_case()
|
|
self.api_case(2)
|
|
self.api_case([-1])
|
|
self.api_case([2, -3])
|
|
self.api_case((0, 1, -1))
|
|
self.api_case(keepdim=True)
|
|
|
|
def test_alias(self):
|
|
paddle.disable_static(self.place)
|
|
x = paddle.to_tensor(self.x)
|
|
out1 = paddle.logsumexp(x)
|
|
out2 = paddle.tensor.logsumexp(x)
|
|
out3 = paddle.tensor.math.logsumexp(x)
|
|
out_ref = ref_logsumexp(self.x)
|
|
for out in [out1, out2, out3]:
|
|
self.assertTrue(np.allclose(out.numpy(), out_ref))
|
|
paddle.enable_static()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|