You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_lrn_op.py

352 lines
13 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
class TestLRNOp(OpTest):
def get_input(self):
r''' TODO(gongweibao): why it's grad diff is so large?
x = np.ndarray(
shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
for m in range(0, self.N):
for i in range(0, self.C):
for h in range(0, self.H):
for w in range(0, self.W):
x[m][i][h][w] = m * self.C * self.H * self.W + \
i * self.H * self.W + \
h * self.W + w + 1
'''
x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
return x + 1
def get_out(self):
start = -(self.n - 1) // 2
end = start + self.n
mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32")
mid.fill(self.k)
for m in range(0, self.N):
for i in range(0, self.C):
for c in range(start, end):
ch = i + c
if ch < 0 or ch >= self.C:
continue
s = mid[m][i][:][:]
r = self.x[m][ch][:][:]
s += np.square(r) * self.alpha
mid2 = np.power(mid, -self.beta)
return np.multiply(self.x, mid2), mid
def get_attrs(self):
attrs = {
'n': self.n,
'k': self.k,
'alpha': self.alpha,
'beta': self.beta,
'data_format': self.data_format
}
return attrs
def setUp(self):
self.op_type = "lrn"
self.init_test_case()
self.N = 2
self.C = 3
self.H = 5
self.W = 5
self.n = 5
self.k = 2.0
self.alpha = 0.0001
self.beta = 0.75
self.x = self.get_input()
self.out, self.mid_out = self.get_out()
if self.data_format == 'NHWC':
self.x = np.transpose(self.x, [0, 2, 3, 1])
self.out = np.transpose(self.out, [0, 2, 3, 1])
self.mid_out = np.transpose(self.mid_out, [0, 2, 3, 1])
self.inputs = {'X': self.x}
self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
self.attrs = self.get_attrs()
def init_test_case(self):
self.data_format = 'NCHW'
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
class TestLRNOpAttrDataFormat(TestLRNOp):
def init_test_case(self):
self.data_format = 'NHWC'
class TestLRNAPI(unittest.TestCase):
def test_case(self):
data1 = fluid.data(name='data1', shape=[2, 4, 5, 5], dtype='float32')
data2 = fluid.data(name='data2', shape=[2, 5, 5, 4], dtype='float32')
out1 = fluid.layers.lrn(data1, data_format='NCHW')
out2 = fluid.layers.lrn(data2, data_format='NHWC')
data1_np = np.random.random((2, 4, 5, 5)).astype("float32")
data2_np = np.transpose(data1_np, [0, 2, 3, 1])
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
results = exe.run(fluid.default_main_program(),
feed={"data1": data1_np,
"data2": data2_np},
fetch_list=[out1, out2],
return_numpy=True)
self.assertTrue(
np.allclose(results[0], np.transpose(results[1], (0, 3, 1, 2))))
def test_exception(self):
input1 = fluid.data(name="input1", shape=[2, 4, 5, 5], dtype="float32")
input2 = fluid.data(
name="input2", shape=[2, 4, 5, 5, 5], dtype="float32")
def _attr_data_fromat():
out = fluid.layers.lrn(input1, data_format='NDHW')
def _input_dim_size():
out = fluid.layers.lrn(input2)
self.assertRaises(ValueError, _attr_data_fromat)
self.assertRaises(ValueError, _input_dim_size)
class TestLRNOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the input must be float32
in_w = fluid.data(name="in_w", shape=[None, 3, 3, 3], dtype="int64")
self.assertRaises(TypeError, fluid.layers.lrn, in_w)
class TestLocalResponseNormFAPI(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_static_3d_input(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
in_np1 = np.random.random([3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 1))
input1 = fluid.data(
name="input1", shape=[3, 40, 40], dtype="float32")
input2 = fluid.data(
name="input2", shape=[3, 40, 40], dtype="float32")
res1 = paddle.nn.functional.local_response_norm(
x=input1, size=5, data_format='NCL')
res2 = paddle.nn.functional.local_response_norm(
x=input2, size=5, data_format='NLC')
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input1": in_np1,
"input2": in_np2},
fetch_list=[res1, res2])
fetches1_tran = np.transpose(fetches[1], (0, 2, 1))
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
def check_static_4d_input(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input1 = fluid.data(
name="input1", shape=[3, 3, 40, 40], dtype="float32")
input2 = fluid.data(
name="input2", shape=[3, 40, 40, 3], dtype="float32")
res1 = paddle.nn.functional.local_response_norm(
x=input1, size=5, data_format='NCHW')
res2 = paddle.nn.functional.local_response_norm(
x=input2, size=5, data_format='NHWC')
in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 3, 1))
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input1": in_np1,
"input2": in_np2},
fetch_list=[res1, res2])
fetches1_tran = np.transpose(fetches[1], (0, 3, 1, 2))
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
def check_static_5d_input(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input1 = fluid.data(
name="input1", shape=[3, 3, 3, 40, 40], dtype="float32")
input2 = fluid.data(
name="input2", shape=[3, 3, 40, 40, 3], dtype="float32")
res1 = paddle.nn.functional.local_response_norm(
x=input1, size=5, data_format='NCDHW')
res2 = paddle.nn.functional.local_response_norm(
x=input2, size=5, data_format='NDHWC')
in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input1": in_np1,
"input2": in_np2},
fetch_list=[res1, res2])
fetches1_tran = np.transpose(fetches[1], (0, 4, 1, 2, 3))
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
def test_static(self):
for place in self.places:
self.check_static_3d_input(place=place)
self.check_static_4d_input(place=place)
self.check_static_5d_input(place=place)
def check_dygraph_3d_input(self, place):
with fluid.dygraph.guard(place):
in_np1 = np.random.random([3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 1))
in1 = paddle.to_tensor(in_np1)
in2 = paddle.to_tensor(in_np2)
res1 = paddle.nn.functional.local_response_norm(
x=in1, size=5, data_format='NCL')
res2 = paddle.nn.functional.local_response_norm(
x=in2, size=5, data_format='NLC')
res2_tran = np.transpose(res2.numpy(), (0, 2, 1))
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
def check_dygraph_4d_input(self, place):
with fluid.dygraph.guard(place):
in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 3, 1))
in1 = paddle.to_tensor(in_np1)
in2 = paddle.to_tensor(in_np2)
res1 = paddle.nn.functional.local_response_norm(
x=in1, size=5, data_format='NCHW')
res2 = paddle.nn.functional.local_response_norm(
x=in2, size=5, data_format='NHWC')
res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
def check_dygraph_5d_input(self, place):
with fluid.dygraph.guard(place):
in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))
in1 = paddle.to_tensor(in_np1)
in2 = paddle.to_tensor(in_np2)
res1 = paddle.nn.functional.local_response_norm(
x=in1, size=5, data_format='NCDHW')
res2 = paddle.nn.functional.local_response_norm(
x=in2, size=5, data_format='NDHWC')
res2_tran = np.transpose(res2.numpy(), (0, 4, 1, 2, 3))
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
def test_dygraph(self):
for place in self.places:
self.check_dygraph_3d_input(place)
self.check_dygraph_4d_input(place)
self.check_dygraph_5d_input(place)
class TestLocalResponseNormFAPIError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input of lrn must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
paddle.nn.functional.local_response_norm(x1, size=5)
self.assertRaises(TypeError, test_Variable)
def test_datatype():
x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="int32")
paddle.nn.functional.local_response_norm(x, size=5)
self.assertRaises(TypeError, test_datatype)
def test_dataformat():
x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="float32")
paddle.nn.functional.local_response_norm(
x, size=5, data_format="NCTHW")
self.assertRaises(ValueError, test_dataformat)
def test_dim():
x = fluid.data(name='x', shape=[3, 4], dtype="float32")
paddle.nn.functional.local_response_norm(x, size=5)
self.assertRaises(ValueError, test_dim)
class TestLocalResponseNormCAPI(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
in1 = paddle.rand(shape=(3, 3, 40, 40), dtype="float32")
in2 = paddle.transpose(in1, [0, 2, 3, 1])
m1 = paddle.nn.LocalResponseNorm(size=5, data_format='NCHW')
m2 = paddle.nn.LocalResponseNorm(size=5, data_format='NHWC')
res1 = m1(in1)
res2 = m2(in2)
res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
if __name__ == "__main__":
unittest.main()