You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_masked_select_op.py

125 lines
4.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle
def np_masked_select(x, mask):
result = np.empty(shape=(0), dtype=x.dtype)
for ele, ma in zip(np.nditer(x), np.nditer(mask)):
if ma:
result = np.append(result, ele)
return result.flatten()
class TestMaskedSelectOp(OpTest):
def setUp(self):
self.init()
self.op_type = "masked_select"
x = np.random.random(self.shape).astype("float64")
mask = np.array(np.random.randint(2, size=self.shape, dtype=bool))
out = np_masked_select(x, mask)
self.inputs = {'X': x, 'Mask': mask}
self.outputs = {'Y': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
def init(self):
self.shape = (50, 3)
class TestMaskedSelectOp1(TestMaskedSelectOp):
def init(self):
self.shape = (6, 8, 9, 18)
class TestMaskedSelectOp2(TestMaskedSelectOp):
def init(self):
self.shape = (168, )
class TestMaskedSelectAPI(unittest.TestCase):
def test_imperative_mode(self):
paddle.disable_static()
shape = (88, 6, 8)
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
x = paddle.to_tensor(np_x)
mask = paddle.to_tensor(np_mask)
out = paddle.masked_select(x, mask)
np_out = np_masked_select(np_x, np_mask)
self.assertEqual(np.allclose(out.numpy(), np_out), True)
paddle.enable_static()
def test_static_mode(self):
shape = [8, 9, 6]
x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
mask = paddle.fluid.data(shape=shape, dtype='bool', name='mask')
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
out = paddle.masked_select(x, mask)
np_out = np_masked_select(np_x, np_mask)
exe = paddle.static.Executor(place=paddle.CPUPlace())
res = exe.run(paddle.static.default_main_program(),
feed={"x": np_x,
"mask": np_mask},
fetch_list=[out])
self.assertEqual(np.allclose(res, np_out), True)
class TestMaskedSelectError(unittest.TestCase):
def test_error(self):
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
shape = [8, 9, 6]
x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
mask = paddle.fluid.data(shape=shape, dtype='bool', name='mask')
mask_float = paddle.fluid.data(
shape=shape, dtype='float32', name='mask_float')
np_x = np.random.random(shape).astype('float32')
np_mask = np.array(np.random.randint(2, size=shape, dtype=bool))
def test_x_type():
paddle.masked_select(np_x, mask)
self.assertRaises(TypeError, test_x_type)
def test_mask_type():
paddle.masked_select(x, np_mask)
self.assertRaises(TypeError, test_mask_type)
def test_mask_dtype():
paddle.masked_select(x, mask_float)
self.assertRaises(TypeError, test_mask_dtype)
if __name__ == '__main__':
unittest.main()