You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_math_op_patch.py

276 lines
10 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division
import unittest
from decorator_helper import prog_scope
import paddle
import paddle.fluid as fluid
import numpy
class TestMathOpPatches(unittest.TestCase):
def setUp(self):
paddle.enable_static()
@prog_scope()
def test_add_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = a + 10
ab = fluid.layers.concat(input=[a, b], axis=1)
c = ab + 10
d = ab + a
# e = a + ab
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np, c_np, d_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b, c, d])
self.assertTrue(numpy.allclose(a_np + 10, b_np))
ab_np = numpy.concatenate([a_np, b_np], axis=1)
self.assertTrue(numpy.allclose(ab_np + 10, c_np))
d_expected = ab_np + numpy.concatenate([a_np, a_np], axis=1)
self.assertTrue(numpy.allclose(d_expected, d_np))
@prog_scope()
def test_radd_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = 10 + a
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np + 10, b_np))
@prog_scope()
def test_sub_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = a - 10
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np - 10, b_np))
@prog_scope()
def test_radd_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = 10 - a
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(10 - a_np, b_np))
@prog_scope()
def test_mul_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = a * 10
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np * 10, b_np))
@prog_scope()
def test_rmul_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = 10 * a
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(10 * a_np, b_np))
@prog_scope()
def test_div_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = a / 10
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np / 10, b_np))
@prog_scope()
def test_rdiv_scalar(self):
a = fluid.layers.data(name="a", shape=[1])
b = 10 / a
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(10 / a_np, b_np))
@prog_scope()
def test_div_two_tensor(self):
a = fluid.layers.data(name="a", shape=[1])
b = fluid.layers.data(name="b", shape=[1])
c = a / b
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
c_np = exe.run(fluid.default_main_program(),
feed={"a": a_np,
'b': b_np},
fetch_list=[c])
self.assertTrue(numpy.allclose(a_np / b_np, c_np))
@prog_scope()
def test_mul_two_tensor(self):
a = fluid.layers.data(name="a", shape=[1])
b = fluid.layers.data(name="b", shape=[1])
c = a * b
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = numpy.random.random(size=[10, 1]).astype('float32')
c_np = exe.run(fluid.default_main_program(),
feed={"a": a_np,
'b': b_np},
fetch_list=[c])
self.assertTrue(numpy.allclose(a_np * b_np, c_np))
@prog_scope()
def test_add_two_tensor(self):
a = fluid.layers.data(name="a", shape=[1])
b = fluid.layers.data(name="b", shape=[1])
c = a + b
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = numpy.random.random(size=[10, 1]).astype('float32')
c_np = exe.run(fluid.default_main_program(),
feed={"a": a_np,
'b': b_np},
fetch_list=[c])
self.assertTrue(numpy.allclose(a_np + b_np, c_np))
@prog_scope()
def test_sub_two_tensor(self):
a = fluid.layers.data(name="a", shape=[1])
b = fluid.layers.data(name="b", shape=[1])
c = a - b
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.random(size=[10, 1]).astype('float32')
b_np = numpy.random.random(size=[10, 1]).astype('float32')
c_np = exe.run(fluid.default_main_program(),
feed={"a": a_np,
'b': b_np},
fetch_list=[c])
self.assertTrue(numpy.allclose(a_np - b_np, c_np))
@prog_scope()
def test_integer_div(self):
a = fluid.layers.data(name="a", shape=[1], dtype='int64')
b = a / 7
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('int64')
b_np, = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
b_np_actual = (a_np / 7).astype('float32')
self.assertTrue(numpy.allclose(b_np, b_np_actual))
@prog_scope()
def test_equal(self):
a = fluid.layers.data(name="a", shape=[1], dtype='float32')
b = fluid.layers.data(name="b", shape=[1], dtype='float32')
c = (a == b)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('float32')
b_np = numpy.array([3, 4, 11, 15, 8, 18]).astype('float32')
c_np, = exe.run(fluid.default_main_program(),
feed={"a": a_np,
"b": b_np},
fetch_list=[c])
self.assertTrue(numpy.array_equal(c_np, a_np == b_np))
self.assertEqual(c.dtype, fluid.core.VarDesc.VarType.BOOL)
@prog_scope()
def test_equal_and_cond(self):
a = fluid.layers.data(name="a", shape=[1], dtype='float32')
b = fluid.layers.data(name="b", shape=[1], dtype='float32')
one = fluid.layers.ones(shape=[1], dtype='int32')
zero = fluid.layers.zeros(shape=[1], dtype='int32')
cond = (one == zero)
c = fluid.layers.cond(cond, lambda: a + b, lambda: a - b)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('float')
b_np = numpy.array([3, 4, 11, 15, 8, 18]).astype('float')
c_np, = exe.run(fluid.default_main_program(),
feed={"a": a_np,
"b": b_np},
fetch_list=[c])
self.assertTrue(numpy.array_equal(c_np, a_np - b_np))
@prog_scope()
def test_neg(self):
a = fluid.layers.data(name="a", shape=[10, 1])
b = -a
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.uniform(-1, 1, size=[10, 1]).astype('float32')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(-a_np, b_np))
@prog_scope()
def test_astype(self):
a = fluid.layers.data(name="a", shape=[10, 1])
b = a.astype('float32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.uniform(-1, 1, size=[10, 1]).astype('float64')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np.astype('float32'), b_np))
if __name__ == '__main__':
unittest.main()