You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_maximum_op.py

114 lines
4.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
class ApiMaximumTest(unittest.TestCase):
def setUp(self):
if core.is_compiled_with_cuda():
self.place = core.CUDAPlace(0)
else:
self.place = core.CPUPlace()
self.input_x = np.random.rand(10, 15).astype("float32")
self.input_y = np.random.rand(10, 15).astype("float32")
self.input_z = np.random.rand(15).astype("float32")
self.input_a = np.array([0, np.nan, np.nan]).astype('int64')
self.input_b = np.array([2, np.inf, -np.inf]).astype('int64')
self.input_c = np.array([4, 1, 3]).astype('int64')
self.np_expected1 = np.maximum(self.input_x, self.input_y)
self.np_expected2 = np.maximum(self.input_x, self.input_z)
self.np_expected3 = np.maximum(self.input_a, self.input_c)
self.np_expected4 = np.maximum(self.input_b, self.input_c)
def test_static_api(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
result_max = paddle.maximum(data_x, data_y)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"x": self.input_x,
"y": self.input_y},
fetch_list=[result_max])
self.assertTrue(np.allclose(res, self.np_expected1))
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
data_z = paddle.static.data("z", shape=[15], dtype="float32")
result_max = paddle.maximum(data_x, data_z)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"x": self.input_x,
"z": self.input_z},
fetch_list=[result_max])
self.assertTrue(np.allclose(res, self.np_expected2))
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_a = paddle.static.data("a", shape=[3], dtype="int64")
data_c = paddle.static.data("c", shape=[3], dtype="int64")
result_max = paddle.maximum(data_a, data_c)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"a": self.input_a,
"c": self.input_c},
fetch_list=[result_max])
self.assertTrue(np.allclose(res, self.np_expected3))
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_b = paddle.static.data("b", shape=[3], dtype="int64")
data_c = paddle.static.data("c", shape=[3], dtype="int64")
result_max = paddle.maximum(data_b, data_c)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"b": self.input_b,
"c": self.input_c},
fetch_list=[result_max])
self.assertTrue(np.allclose(res, self.np_expected4))
def test_dynamic_api(self):
paddle.disable_static()
x = paddle.to_tensor(self.input_x)
y = paddle.to_tensor(self.input_y)
z = paddle.to_tensor(self.input_z)
a = paddle.to_tensor(self.input_a)
b = paddle.to_tensor(self.input_b)
c = paddle.to_tensor(self.input_c)
res = paddle.maximum(x, y)
res = res.numpy()
self.assertTrue(np.allclose(res, self.np_expected1))
# test broadcast
res = paddle.maximum(x, z)
res = res.numpy()
self.assertTrue(np.allclose(res, self.np_expected2))
res = paddle.maximum(a, c)
res = res.numpy()
self.assertTrue(np.allclose(res, self.np_expected3))
res = paddle.maximum(b, c)
res = res.numpy()
self.assertTrue(np.allclose(res, self.np_expected4))