You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_maxout_op.py

150 lines
5.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as F
from op_test import OpTest
paddle.enable_static()
np.random.seed(1)
def maxout_forward_naive(x, groups, channel_axis):
s0, s1, s2, s3 = x.shape
if channel_axis == 1:
return np.ndarray([s0, s1 // groups, groups, s2, s3], \
buffer = x, dtype=x.dtype).max(axis=2)
return np.ndarray([s0, s1, s2, s3 // groups, groups], \
buffer = x, dtype=x.dtype).max(axis=4)
class TestMaxOutOp(OpTest):
def setUp(self):
self.op_type = "maxout"
self.dtype = 'float64'
self.shape = [3, 6, 2, 4]
self.groups = 2
self.axis = 1
self.set_attrs()
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
out = maxout_forward_naive(x, self.groups, self.axis)
self.inputs = {'X': x}
self.attrs = {'groups': self.groups, 'axis': self.axis}
self.outputs = {'Out': out}
def set_attrs(self):
pass
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestMaxOutOpAxis0(TestMaxOutOp):
def set_attrs(self):
self.axis = -1
class TestMaxOutOpAxis1(TestMaxOutOp):
def set_attrs(self):
self.axis = 3
class TestMaxOutOpFP32(TestMaxOutOp):
def set_attrs(self):
self.dtype = 'float32'
class TestMaxOutOpGroups(TestMaxOutOp):
def set_attrs(self):
self.groups = 3
class TestMaxoutAPI(unittest.TestCase):
# test paddle.nn.Maxout, paddle.nn.functional.maxout
def setUp(self):
self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
self.groups = 2
self.axis = 1
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
def test_static_api(self):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
out1 = F.maxout(x, self.groups, self.axis)
m = paddle.nn.Maxout(self.groups, self.axis)
out2 = m(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
for r in res:
self.assertTrue(np.allclose(out_ref, r))
def test_dygraph_api(self):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x_np)
out1 = F.maxout(x, self.groups, self.axis)
m = paddle.nn.Maxout(self.groups, self.axis)
out2 = m(x)
out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
for r in [out1, out2]:
self.assertTrue(np.allclose(out_ref, r.numpy()))
out3 = F.maxout(x, self.groups, -1)
out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
self.assertTrue(np.allclose(out3_ref, out3.numpy()))
paddle.enable_static()
def test_fluid_api(self):
with fluid.program_guard(fluid.Program()):
x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
out = fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
exe = fluid.Executor(self.place)
res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
self.assertTrue(np.allclose(out_ref, res[0]))
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x_np)
out = paddle.fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
self.assertTrue(np.allclose(out_ref, out.numpy()))
paddle.enable_static()
def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()):
# The input type must be Variable.
self.assertRaises(TypeError, F.maxout, 1)
# The input dtype must be float16, float32, float64.
x_int32 = paddle.fluid.data(
name='x_int32', shape=[2, 4, 6, 8], dtype='int32')
self.assertRaises(TypeError, F.maxout, x_int32)
x_float32 = paddle.fluid.data(name='x_float32', shape=[2, 4, 6, 8])
self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
if __name__ == '__main__':
unittest.main()