You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.6 KiB
177 lines
6.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import op_test
|
|
import numpy as np
|
|
import unittest
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
from paddle.fluid.backward import append_backward
|
|
|
|
|
|
class TestMemcpy_FillConstant(unittest.TestCase):
|
|
def get_prog(self):
|
|
paddle.enable_static()
|
|
main_program = Program()
|
|
with program_guard(main_program):
|
|
pinned_var_name = "tensor@Pinned"
|
|
gpu_var_name = "tensor@GPU"
|
|
pinned_var = main_program.global_block().create_var(
|
|
name=pinned_var_name,
|
|
shape=[10, 10],
|
|
dtype='float32',
|
|
persistable=False,
|
|
stop_gradient=True)
|
|
gpu_var = main_program.global_block().create_var(
|
|
name=gpu_var_name,
|
|
shape=[10, 10],
|
|
dtype='float32',
|
|
persistable=False,
|
|
stop_gradient=True)
|
|
main_program.global_block().append_op(
|
|
type="fill_constant",
|
|
outputs={"Out": gpu_var_name},
|
|
attrs={
|
|
"shape": [10, 10],
|
|
"dtype": gpu_var.dtype,
|
|
"value": 1.0,
|
|
"place_type": 1
|
|
})
|
|
main_program.global_block().append_op(
|
|
type="fill_constant",
|
|
outputs={"Out": pinned_var_name},
|
|
attrs={
|
|
"shape": [10, 10],
|
|
"dtype": gpu_var.dtype,
|
|
"value": 0.0,
|
|
"place_type": 2
|
|
})
|
|
return main_program, gpu_var, pinned_var
|
|
|
|
def test_gpu_cpoy_to_pinned(self):
|
|
main_program, gpu_var, pinned_var = self.get_prog()
|
|
main_program.global_block().append_op(
|
|
type='memcpy',
|
|
inputs={'X': gpu_var},
|
|
outputs={'Out': pinned_var},
|
|
attrs={'dst_place_type': 2})
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
gpu_, pinned_ = exe.run(main_program,
|
|
feed={},
|
|
fetch_list=[gpu_var.name, pinned_var.name])
|
|
self.assertTrue(np.allclose(gpu_, pinned_))
|
|
self.assertTrue(np.allclose(pinned_, np.ones((10, 10))))
|
|
|
|
def test_pinned_cpoy_gpu(self):
|
|
main_program, gpu_var, pinned_var = self.get_prog()
|
|
main_program.global_block().append_op(
|
|
type='memcpy',
|
|
inputs={'X': pinned_var},
|
|
outputs={'Out': gpu_var},
|
|
attrs={'dst_place_type': 1})
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
gpu_, pinned_ = exe.run(main_program,
|
|
feed={},
|
|
fetch_list=[gpu_var.name, pinned_var.name])
|
|
self.assertTrue(np.allclose(gpu_, pinned_))
|
|
self.assertTrue(np.allclose(gpu_, np.zeros((10, 10))))
|
|
|
|
|
|
class TestMemcpyOPError(unittest.TestCase):
|
|
def get_prog(self):
|
|
paddle.enable_static()
|
|
main_program = Program()
|
|
with program_guard(main_program):
|
|
pinned_var = main_program.global_block().create_var(
|
|
name="tensor@Pinned_0",
|
|
shape=[10, 10],
|
|
dtype='float32',
|
|
persistable=False,
|
|
stop_gradient=True)
|
|
main_program.global_block().append_op(
|
|
type="fill_constant",
|
|
outputs={"Out": "tensor@Pinned_0"},
|
|
attrs={
|
|
"shape": [10, 10],
|
|
"dtype": pinned_var.dtype,
|
|
"value": 0.0,
|
|
"place_type": 2
|
|
})
|
|
return main_program, pinned_var
|
|
|
|
def test_SELECTED_ROWS(self):
|
|
main_program, pinned_var = self.get_prog()
|
|
selected_row_var = main_program.global_block().create_var( \
|
|
name="selected_row_0", dtype="float32", persistable=False, \
|
|
type=fluid.core.VarDesc.VarType.SELECTED_ROWS, stop_gradient=True)
|
|
main_program.global_block().append_op(
|
|
type="fill_constant",
|
|
outputs={"Out": selected_row_var},
|
|
attrs={
|
|
"shape": selected_row_var.shape,
|
|
"dtype": selected_row_var.dtype,
|
|
"value": 1.0,
|
|
"place_type": 1
|
|
})
|
|
main_program.global_block().append_op(
|
|
type='memcpy',
|
|
inputs={'X': selected_row_var},
|
|
outputs={'Out': pinned_var},
|
|
attrs={'dst_place_type': 2})
|
|
with self.assertRaises(NotImplementedError):
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
selected_row_var_, pinned_ = exe.run(
|
|
main_program,
|
|
feed={},
|
|
fetch_list=[selected_row_var.name, pinned_var.name])
|
|
|
|
def test_OTHER_PLACE_NotImplementedError(self):
|
|
main_program, pinned_var = self.get_prog()
|
|
lod_tensor_var = main_program.global_block().create_var( \
|
|
name="lod_tensor_0", dtype="float32", persistable=False, stop_gradient=True)
|
|
main_program.global_block().append_op(
|
|
type="fill_constant",
|
|
outputs={"Out": lod_tensor_var},
|
|
attrs={
|
|
"shape": lod_tensor_var.shape,
|
|
"dtype": lod_tensor_var.dtype,
|
|
"value": 1.0,
|
|
"place_type": 0
|
|
})
|
|
main_program.global_block().append_op(
|
|
type='memcpy',
|
|
inputs={'X': pinned_var},
|
|
outputs={'Out': lod_tensor_var},
|
|
attrs={'dst_place_type': 0, })
|
|
with self.assertRaises(NotImplementedError):
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
lod_tensor_var_, pinned_ = exe.run(
|
|
main_program,
|
|
feed={},
|
|
fetch_list=[lod_tensor_var.name, pinned_var.name])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
unittest.main()
|