You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_memcpy_op.py

177 lines
6.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import op_test
import numpy as np
import unittest
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.backward import append_backward
class TestMemcpy_FillConstant(unittest.TestCase):
def get_prog(self):
paddle.enable_static()
main_program = Program()
with program_guard(main_program):
pinned_var_name = "tensor@Pinned"
gpu_var_name = "tensor@GPU"
pinned_var = main_program.global_block().create_var(
name=pinned_var_name,
shape=[10, 10],
dtype='float32',
persistable=False,
stop_gradient=True)
gpu_var = main_program.global_block().create_var(
name=gpu_var_name,
shape=[10, 10],
dtype='float32',
persistable=False,
stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": gpu_var_name},
attrs={
"shape": [10, 10],
"dtype": gpu_var.dtype,
"value": 1.0,
"place_type": 1
})
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": pinned_var_name},
attrs={
"shape": [10, 10],
"dtype": gpu_var.dtype,
"value": 0.0,
"place_type": 2
})
return main_program, gpu_var, pinned_var
def test_gpu_cpoy_to_pinned(self):
main_program, gpu_var, pinned_var = self.get_prog()
main_program.global_block().append_op(
type='memcpy',
inputs={'X': gpu_var},
outputs={'Out': pinned_var},
attrs={'dst_place_type': 2})
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
gpu_, pinned_ = exe.run(main_program,
feed={},
fetch_list=[gpu_var.name, pinned_var.name])
self.assertTrue(np.allclose(gpu_, pinned_))
self.assertTrue(np.allclose(pinned_, np.ones((10, 10))))
def test_pinned_cpoy_gpu(self):
main_program, gpu_var, pinned_var = self.get_prog()
main_program.global_block().append_op(
type='memcpy',
inputs={'X': pinned_var},
outputs={'Out': gpu_var},
attrs={'dst_place_type': 1})
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
gpu_, pinned_ = exe.run(main_program,
feed={},
fetch_list=[gpu_var.name, pinned_var.name])
self.assertTrue(np.allclose(gpu_, pinned_))
self.assertTrue(np.allclose(gpu_, np.zeros((10, 10))))
class TestMemcpyOPError(unittest.TestCase):
def get_prog(self):
paddle.enable_static()
main_program = Program()
with program_guard(main_program):
pinned_var = main_program.global_block().create_var(
name="tensor@Pinned_0",
shape=[10, 10],
dtype='float32',
persistable=False,
stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": "tensor@Pinned_0"},
attrs={
"shape": [10, 10],
"dtype": pinned_var.dtype,
"value": 0.0,
"place_type": 2
})
return main_program, pinned_var
def test_SELECTED_ROWS(self):
main_program, pinned_var = self.get_prog()
selected_row_var = main_program.global_block().create_var( \
name="selected_row_0", dtype="float32", persistable=False, \
type=fluid.core.VarDesc.VarType.SELECTED_ROWS, stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": selected_row_var},
attrs={
"shape": selected_row_var.shape,
"dtype": selected_row_var.dtype,
"value": 1.0,
"place_type": 1
})
main_program.global_block().append_op(
type='memcpy',
inputs={'X': selected_row_var},
outputs={'Out': pinned_var},
attrs={'dst_place_type': 2})
with self.assertRaises(NotImplementedError):
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
selected_row_var_, pinned_ = exe.run(
main_program,
feed={},
fetch_list=[selected_row_var.name, pinned_var.name])
def test_OTHER_PLACE_NotImplementedError(self):
main_program, pinned_var = self.get_prog()
lod_tensor_var = main_program.global_block().create_var( \
name="lod_tensor_0", dtype="float32", persistable=False, stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": lod_tensor_var},
attrs={
"shape": lod_tensor_var.shape,
"dtype": lod_tensor_var.dtype,
"value": 1.0,
"place_type": 0
})
main_program.global_block().append_op(
type='memcpy',
inputs={'X': pinned_var},
outputs={'Out': lod_tensor_var},
attrs={'dst_place_type': 0, })
with self.assertRaises(NotImplementedError):
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
lod_tensor_var_, pinned_ = exe.run(
main_program,
feed={},
fetch_list=[lod_tensor_var.name, pinned_var.name])
if __name__ == '__main__':
paddle.enable_static()
unittest.main()