You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
5.8 KiB
182 lines
5.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
import sys
|
|
sys.path.append("..")
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
|
|
|
|
class TestMulOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "mul"
|
|
self.dtype = np.float64
|
|
self.init_dtype_type()
|
|
self.inputs = {
|
|
'X': np.random.random((20, 5)).astype(self.dtype),
|
|
'Y': np.random.random((5, 21)).astype(self.dtype)
|
|
}
|
|
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
def init_dtype_type(self):
|
|
pass
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
|
|
|
|
|
|
class TestMulOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
# The input type of mul_op must be Variable.
|
|
x1 = fluid.create_lod_tensor(
|
|
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
|
x2 = fluid.create_lod_tensor(
|
|
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
|
self.assertRaises(TypeError, fluid.layers.mul, x1, x2)
|
|
# The input dtype of mul_op must be float32 or float64.
|
|
x3 = fluid.layers.data(name='x3', shape=[4], dtype="int32")
|
|
x4 = fluid.layers.data(name='x4', shape=[4], dtype="int32")
|
|
self.assertRaises(TypeError, fluid.layers.mul, x3, x4)
|
|
|
|
|
|
class TestMulOp2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "mul"
|
|
self.dtype = np.float64
|
|
self.init_dtype_type()
|
|
self.inputs = {
|
|
'X': np.random.random((3, 4, 2, 9)).astype(self.dtype),
|
|
'Y': np.random.random((3, 6, 1, 2, 3)).astype(self.dtype)
|
|
}
|
|
self.attrs = {
|
|
'x_num_col_dims': 2,
|
|
'y_num_col_dims': 2,
|
|
}
|
|
result = np.dot(self.inputs['X'].reshape(3 * 4, 2 * 9),
|
|
self.inputs['Y'].reshape(3 * 6, 1 * 2 * 3))
|
|
result = result.reshape(3, 4, 1, 2, 3)
|
|
self.outputs = {'Out': result}
|
|
|
|
def init_dtype_type(self):
|
|
pass
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set('X'))
|
|
|
|
def test_check_grad_ignore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestFP16MulOp1(TestMulOp):
|
|
def init_dtype_type(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-1)
|
|
|
|
def test_check_grad_normal(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['X', 'Y'], 'Out', max_relative_error=0.5)
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['Y'],
|
|
'Out',
|
|
max_relative_error=0.5,
|
|
no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['X'],
|
|
'Out',
|
|
max_relative_error=0.5,
|
|
no_grad_set=set('Y'))
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestFP16MulOp2(TestMulOp2):
|
|
def init_dtype_type(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=2e-1)
|
|
|
|
def test_check_grad_normal(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['X', 'Y'], 'Out', max_relative_error=0.9)
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['Y'],
|
|
'Out',
|
|
max_relative_error=0.5,
|
|
no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['X'],
|
|
'Out',
|
|
max_relative_error=0.9,
|
|
no_grad_set=set('Y'))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|