You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_multiply.py

169 lines
6.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.tensor as tensor
from paddle.static import Program, program_guard
class TestMultiplyApi(unittest.TestCase):
def _run_static_graph_case(self, x_data, y_data):
with program_guard(Program(), Program()):
paddle.enable_static()
x = paddle.static.data(
name='x', shape=x_data.shape, dtype=x_data.dtype)
y = paddle.static.data(
name='y', shape=y_data.shape, dtype=y_data.dtype)
res = tensor.multiply(x, y)
place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.static.Executor(place)
outs = exe.run(paddle.static.default_main_program(),
feed={'x': x_data,
'y': y_data},
fetch_list=[res])
res = outs[0]
return res
def _run_dynamic_graph_case(self, x_data, y_data):
paddle.disable_static()
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.multiply(x, y)
return res.numpy()
def test_multiply(self):
np.random.seed(7)
# test static computation graph: 1-d array
x_data = np.random.rand(200)
y_data = np.random.rand(200)
res = self._run_static_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
# test static computation graph: 2-d array
x_data = np.random.rand(2, 500)
y_data = np.random.rand(2, 500)
res = self._run_static_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
# test static computation graph: broadcast
x_data = np.random.rand(2, 500)
y_data = np.random.rand(500)
res = self._run_static_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
# test dynamic computation graph: 1-d array
x_data = np.random.rand(200)
y_data = np.random.rand(200)
res = self._run_dynamic_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
# test dynamic computation graph: 2-d array
x_data = np.random.rand(20, 50)
y_data = np.random.rand(20, 50)
res = self._run_dynamic_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
# test dynamic computation graph: broadcast
x_data = np.random.rand(2, 500)
y_data = np.random.rand(500)
res = self._run_dynamic_graph_case(x_data, y_data)
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
class TestMultiplyError(unittest.TestCase):
def test_errors(self):
# test static computation graph: dtype can not be int8
paddle.enable_static()
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
self.assertRaises(TypeError, tensor.multiply, x, y)
# test static computation graph: inputs must be broadcastable
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64)
y = paddle.static.data(name='y', shape=[20], dtype=np.float64)
self.assertRaises(ValueError, tensor.multiply, x, y)
np.random.seed(7)
# test dynamic computation graph: dtype can not be int8
paddle.disable_static()
x_data = np.random.randn(200).astype(np.int8)
y_data = np.random.randn(200).astype(np.int8)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
self.assertRaises(RuntimeError, paddle.multiply, x, y)
# test dynamic computation graph: inputs must be broadcastable
x_data = np.random.rand(200, 5)
y_data = np.random.rand(200)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
self.assertRaises(ValueError, paddle.multiply, x, y)
# test dynamic computation graph: inputs must be broadcastable(python)
x_data = np.random.rand(200, 5)
y_data = np.random.rand(200)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
self.assertRaises(ValueError, paddle.multiply, x, y)
# test dynamic computation graph: dtype must be same
x_data = np.random.randn(200).astype(np.int64)
y_data = np.random.randn(200).astype(np.float64)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
self.assertRaises(ValueError, paddle.multiply, x, y)
# test dynamic computation graph: dtype must be Tensor type
x_data = np.random.randn(200).astype(np.int64)
y_data = np.random.randn(200).astype(np.float64)
y = paddle.to_tensor(y_data)
self.assertRaises(ValueError, paddle.multiply, x_data, y)
# test dynamic computation graph: dtype must be Tensor type
x_data = np.random.randn(200).astype(np.int64)
y_data = np.random.randn(200).astype(np.float64)
x = paddle.to_tensor(x_data)
self.assertRaises(ValueError, paddle.multiply, x, y_data)
# test dynamic computation graph: dtype must be Tensor type
x_data = np.random.randn(200).astype(np.float32)
y_data = np.random.randn(200).astype(np.float32)
x = paddle.to_tensor(x_data)
self.assertRaises(ValueError, paddle.multiply, x, y_data)
# test dynamic computation graph: dtype must be Tensor type
x_data = np.random.randn(200).astype(np.float32)
y_data = np.random.randn(200).astype(np.float32)
x = paddle.to_tensor(x_data)
self.assertRaises(ValueError, paddle.multiply, x_data, y)
# test dynamic computation graph: dtype must be Tensor type
x_data = np.random.randn(200).astype(np.float32)
y_data = np.random.randn(200).astype(np.float32)
self.assertRaises(ValueError, paddle.multiply, x_data, y_data)
if __name__ == '__main__':
unittest.main()