You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
7.8 KiB
244 lines
7.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import os
|
|
import sys
|
|
import six
|
|
import time
|
|
import unittest
|
|
import multiprocessing
|
|
import numpy as np
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.io import Dataset, IterableDataset, BatchSampler, DataLoader
|
|
from paddle.fluid.dygraph.nn import Linear
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
from paddle.fluid.dataloader.dataloader_iter import _worker_loop
|
|
|
|
|
|
class RandomDataset(Dataset):
|
|
def __init__(self, sample_num):
|
|
self.sample_num = sample_num
|
|
|
|
def __getitem__(self, idx):
|
|
np.random.seed(idx)
|
|
image = np.random.random([784]).astype('float32')
|
|
label = np.random.randint(0, 9, (1, )).astype('int64')
|
|
return image, label
|
|
|
|
def __len__(self):
|
|
return self.sample_num
|
|
|
|
|
|
class TestDataLoaderAssert(unittest.TestCase):
|
|
def test_main(self):
|
|
place = fluid.cpu_places()[0]
|
|
with fluid.dygraph.guard(place):
|
|
dataset = RandomDataset(100)
|
|
batch_sampler = BatchSampler(dataset=dataset, batch_size=4)
|
|
|
|
# dataset is not instance of Dataset
|
|
try:
|
|
loader = DataLoader(dataset=batch_sampler, places=place)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
# places is None
|
|
try:
|
|
loader = DataLoader(dataset=dataset, places=None)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
# num_workers < 0
|
|
try:
|
|
loader = DataLoader(
|
|
dataset=dataset, places=place, num_workers=-1)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
# timeout < 0
|
|
try:
|
|
loader = DataLoader(dataset=dataset, places=place, timeout=-1)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
# set batch_sampler and shuffle/batch_size/drop_last
|
|
try:
|
|
loader = DataLoader(
|
|
dataset=dataset,
|
|
places=place,
|
|
batch_sampler=batch_sampler,
|
|
shuffle=True,
|
|
drop_last=True)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
# set batch_sampler correctly
|
|
try:
|
|
loader = DataLoader(
|
|
dataset=dataset, places=place, batch_sampler=batch_sampler)
|
|
self.assertTrue(True)
|
|
except AssertionError:
|
|
self.assertTrue(False)
|
|
|
|
|
|
class TestDatasetRuntimeError(unittest.TestCase):
|
|
def test_main(self):
|
|
dataset = Dataset()
|
|
|
|
# __getitem__ not implement
|
|
try:
|
|
d = dataset[0]
|
|
self.assertTrue(False)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
# __len__ not implement
|
|
try:
|
|
l = len(dataset)
|
|
self.assertTrue(False)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
dataset = IterableDataset()
|
|
|
|
# __iter__ not implement
|
|
try:
|
|
d = iter(dataset)
|
|
self.assertTrue(False)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
# __getitem__ runtime error
|
|
try:
|
|
d = dataset[0]
|
|
self.assertTrue(False)
|
|
except RuntimeError:
|
|
pass
|
|
|
|
# __len__ runtime error
|
|
try:
|
|
l = len(dataset)
|
|
self.assertTrue(False)
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
# CI Converage cannot record stub in subprocess,
|
|
# HACK a _worker_loop in main process call here
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestDataLoaderWorkerLoop(unittest.TestCase):
|
|
def run_without_worker_done(self, use_shared_memory=True):
|
|
try:
|
|
place = fluid.cpu_places()[0]
|
|
with fluid.dygraph.guard(place):
|
|
dataset = RandomDataset(800)
|
|
|
|
# test init_fn
|
|
def _init_fn(worker_id):
|
|
pass
|
|
|
|
# test collate_fn
|
|
def _collate_fn(sample_list):
|
|
return [
|
|
np.stack(
|
|
s, axis=0) for s in list(zip(*sample_list))
|
|
]
|
|
|
|
loader = DataLoader(
|
|
dataset,
|
|
num_workers=1,
|
|
places=place,
|
|
use_shared_memory=use_shared_memory)
|
|
assert loader.num_workers > 0, \
|
|
"go to AssertionError and pass in Mac and Windows"
|
|
loader = iter(loader)
|
|
print("loader length", len(loader))
|
|
indices_queue = multiprocessing.Queue()
|
|
for i in range(10):
|
|
indices_queue.put([i, i + 10])
|
|
indices_queue.put(None)
|
|
_worker_loop(loader._dataset, 0, indices_queue,
|
|
loader._data_queue, loader._workers_done_event,
|
|
True, _collate_fn, _init_fn, 0, 1,
|
|
loader._use_shared_memory)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
except Exception as e:
|
|
print("Exception", e)
|
|
import sys
|
|
sys.stdout.flush()
|
|
self.assertTrue(False)
|
|
|
|
def run_with_worker_done(self, use_shared_memory=True):
|
|
try:
|
|
place = fluid.CPUPlace()
|
|
with fluid.dygraph.guard(place):
|
|
dataset = RandomDataset(800)
|
|
|
|
# test init_fn
|
|
def _init_fn(worker_id):
|
|
pass
|
|
|
|
# test collate_fn
|
|
def _collate_fn(sample_list):
|
|
return [
|
|
np.stack(
|
|
s, axis=0) for s in list(zip(*sample_list))
|
|
]
|
|
|
|
loader = DataLoader(
|
|
dataset,
|
|
num_workers=1,
|
|
places=place,
|
|
use_shared_memory=use_shared_memory)
|
|
assert loader.num_workers > 0, \
|
|
"go to AssertionError and pass in Mac and Windows"
|
|
loader = iter(loader)
|
|
print("loader length", len(loader))
|
|
indices_queue = multiprocessing.Queue()
|
|
for i in range(10):
|
|
indices_queue.put([i, i + 10])
|
|
indices_queue.put(None)
|
|
loader._workers_done_event.set()
|
|
_worker_loop(loader._dataset, 0, indices_queue,
|
|
loader._data_queue, loader._workers_done_event,
|
|
True, _collate_fn, _init_fn, 0, 1,
|
|
loader._use_shared_memory)
|
|
self.assertTrue(True)
|
|
except AssertionError:
|
|
pass
|
|
except Exception:
|
|
self.assertTrue(False)
|
|
|
|
def test_main(self):
|
|
# only HACK a subprocess call here, do not need to use_shared_memory
|
|
for use_shared_memory in [False]:
|
|
self.run_without_worker_done(use_shared_memory)
|
|
self.run_with_worker_done(use_shared_memory)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|