You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_mv_op.py

111 lines
3.8 KiB

#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.static import program_guard, Program
from op_test import OpTest
class TestMVOp(OpTest):
def setUp(self):
self.op_type = "mv"
self.init_config()
self.inputs = {'X': self.x, 'Vec': self.vec}
self.outputs = {'Out': np.dot(self.x, self.vec)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Vec'], 'Out')
def init_config(self):
self.x = np.random.random((2, 100)).astype("float64")
self.vec = np.random.random((100)).astype("float64")
class TestMVAPI(unittest.TestCase):
def test_dygraph_api_out(self):
paddle.disable_static()
self.x_data = np.random.random((5, 100)).astype("float64")
self.x = paddle.to_tensor(self.x_data)
self.vec_data = np.random.random((100)).astype("float64")
self.vec = paddle.to_tensor(self.vec_data)
z = paddle.mv(self.x, self.vec)
np_z = z.numpy()
z_expected = np.array(np.dot(self.x_data, self.vec_data))
self.assertTrue(np.allclose(np_z, z_expected))
paddle.enable_static()
def test_static_graph(self):
for x_stop_gradient in [False, True]:
for vec_stop_gradient in [False, True]:
paddle.enable_static()
train_program = Program()
startup_program = Program()
self.input_x = np.random.rand(5, 100).astype("float64")
self.input_vec = np.random.rand(100).astype("float64")
with program_guard(train_program, startup_program):
data_x = paddle.static.data(
"x", shape=[5, 100], dtype="float64")
data_vec = paddle.static.data(
"vec", shape=[100], dtype="float64")
data_x.stop_gradient = x_stop_gradient
data_vec.stop_gradient = vec_stop_gradient
result_vec = paddle.mv(data_x, data_vec)
self.place = paddle.CPUPlace()
exe = paddle.static.Executor(self.place)
res, = exe.run(
feed={"x": self.input_x,
"vec": self.input_vec},
fetch_list=[result_vec])
z_expected = np.array(np.dot(self.input_x, self.input_vec))
self.assertTrue(np.allclose(res, z_expected))
class TestMVError(unittest.TestCase):
def test_input(self):
def test_shape():
paddle.enable_static()
self.input_x = np.random.rand(5, 100).astype("float64")
self.input_vec = np.random.rand(100).astype("float64")
data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
data_vec = paddle.static.data(
"vec", shape=[100, 2], dtype="float64")
result_vec = paddle.mv(data_x, data_vec)
self.assertRaises(ValueError, test_shape)
if __name__ == '__main__':
unittest.main()