You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
3.8 KiB
111 lines
3.8 KiB
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
from paddle.static import program_guard, Program
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestMVOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "mv"
|
|
self.init_config()
|
|
self.inputs = {'X': self.x, 'Vec': self.vec}
|
|
self.outputs = {'Out': np.dot(self.x, self.vec)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X', 'Vec'], 'Out')
|
|
|
|
def init_config(self):
|
|
self.x = np.random.random((2, 100)).astype("float64")
|
|
self.vec = np.random.random((100)).astype("float64")
|
|
|
|
|
|
class TestMVAPI(unittest.TestCase):
|
|
def test_dygraph_api_out(self):
|
|
paddle.disable_static()
|
|
|
|
self.x_data = np.random.random((5, 100)).astype("float64")
|
|
self.x = paddle.to_tensor(self.x_data)
|
|
self.vec_data = np.random.random((100)).astype("float64")
|
|
self.vec = paddle.to_tensor(self.vec_data)
|
|
z = paddle.mv(self.x, self.vec)
|
|
np_z = z.numpy()
|
|
z_expected = np.array(np.dot(self.x_data, self.vec_data))
|
|
self.assertTrue(np.allclose(np_z, z_expected))
|
|
|
|
paddle.enable_static()
|
|
|
|
def test_static_graph(self):
|
|
for x_stop_gradient in [False, True]:
|
|
for vec_stop_gradient in [False, True]:
|
|
|
|
paddle.enable_static()
|
|
|
|
train_program = Program()
|
|
startup_program = Program()
|
|
|
|
self.input_x = np.random.rand(5, 100).astype("float64")
|
|
self.input_vec = np.random.rand(100).astype("float64")
|
|
|
|
with program_guard(train_program, startup_program):
|
|
data_x = paddle.static.data(
|
|
"x", shape=[5, 100], dtype="float64")
|
|
data_vec = paddle.static.data(
|
|
"vec", shape=[100], dtype="float64")
|
|
|
|
data_x.stop_gradient = x_stop_gradient
|
|
data_vec.stop_gradient = vec_stop_gradient
|
|
|
|
result_vec = paddle.mv(data_x, data_vec)
|
|
|
|
self.place = paddle.CPUPlace()
|
|
exe = paddle.static.Executor(self.place)
|
|
res, = exe.run(
|
|
feed={"x": self.input_x,
|
|
"vec": self.input_vec},
|
|
fetch_list=[result_vec])
|
|
z_expected = np.array(np.dot(self.input_x, self.input_vec))
|
|
self.assertTrue(np.allclose(res, z_expected))
|
|
|
|
|
|
class TestMVError(unittest.TestCase):
|
|
def test_input(self):
|
|
def test_shape():
|
|
paddle.enable_static()
|
|
|
|
self.input_x = np.random.rand(5, 100).astype("float64")
|
|
self.input_vec = np.random.rand(100).astype("float64")
|
|
|
|
data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
|
|
data_vec = paddle.static.data(
|
|
"vec", shape=[100, 2], dtype="float64")
|
|
result_vec = paddle.mv(data_x, data_vec)
|
|
|
|
self.assertRaises(ValueError, test_shape)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|