You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_numel_op.py

102 lines
3.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import functools
import paddle
class TestNumelOp(OpTest):
def setUp(self):
self.op_type = "size"
self.init()
x = np.random.random((self.shape)).astype("float64")
self.inputs = {'Input': x, }
self.outputs = {'Out': np.array([np.size(x)])}
def test_check_output(self):
self.check_output()
def init(self):
self.shape = (6, 56, 8, 55)
class TestNumelOp1(TestNumelOp):
def init(self):
self.shape = (11, 66)
class TestNumelOp2(TestNumelOp):
def init(self):
self.shape = (0, )
class TestNumelAPI(unittest.TestCase):
def test_numel_static(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
shape1 = [2, 1, 4, 5]
shape2 = [1, 4, 5]
x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
input_1 = np.random.random(shape1).astype("int32")
input_2 = np.random.random(shape2).astype("int32")
out_1 = paddle.numel(x_1)
out_2 = paddle.numel(x_2)
exe = paddle.static.Executor(place=paddle.CPUPlace())
res_1, res_2 = exe.run(feed={
"x_1": input_1,
"x_2": input_2,
},
fetch_list=[out_1, out_2])
assert (np.array_equal(
res_1, np.array([np.size(input_1)]).astype("int64")))
assert (np.array_equal(
res_2, np.array([np.size(input_2)]).astype("int64")))
def test_numel_imperative(self):
paddle.disable_static(paddle.CPUPlace())
input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
input_2 = np.random.random([1, 4, 5]).astype("int32")
x_1 = paddle.to_tensor(input_1)
x_2 = paddle.to_tensor(input_2)
out_1 = paddle.numel(x_1)
out_2 = paddle.numel(x_2)
assert (np.array_equal(out_1.numpy().item(0), np.size(input_1)))
assert (np.array_equal(out_2.numpy().item(0), np.size(input_2)))
paddle.enable_static()
def test_error(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
def test_x_type():
shape = [1, 4, 5]
input_1 = np.random.random(shape).astype("int32")
out_1 = paddle.numel(input_1)
self.assertRaises(TypeError, test_x_type)
if __name__ == '__main__':
unittest.main()