You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.4 KiB
102 lines
3.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
import functools
|
|
import paddle
|
|
|
|
|
|
class TestNumelOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "size"
|
|
self.init()
|
|
x = np.random.random((self.shape)).astype("float64")
|
|
self.inputs = {'Input': x, }
|
|
self.outputs = {'Out': np.array([np.size(x)])}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def init(self):
|
|
self.shape = (6, 56, 8, 55)
|
|
|
|
|
|
class TestNumelOp1(TestNumelOp):
|
|
def init(self):
|
|
self.shape = (11, 66)
|
|
|
|
|
|
class TestNumelOp2(TestNumelOp):
|
|
def init(self):
|
|
self.shape = (0, )
|
|
|
|
|
|
class TestNumelAPI(unittest.TestCase):
|
|
def test_numel_static(self):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
shape1 = [2, 1, 4, 5]
|
|
shape2 = [1, 4, 5]
|
|
x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
|
|
x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
|
|
input_1 = np.random.random(shape1).astype("int32")
|
|
input_2 = np.random.random(shape2).astype("int32")
|
|
out_1 = paddle.numel(x_1)
|
|
out_2 = paddle.numel(x_2)
|
|
exe = paddle.static.Executor(place=paddle.CPUPlace())
|
|
res_1, res_2 = exe.run(feed={
|
|
"x_1": input_1,
|
|
"x_2": input_2,
|
|
},
|
|
fetch_list=[out_1, out_2])
|
|
assert (np.array_equal(
|
|
res_1, np.array([np.size(input_1)]).astype("int64")))
|
|
assert (np.array_equal(
|
|
res_2, np.array([np.size(input_2)]).astype("int64")))
|
|
|
|
def test_numel_imperative(self):
|
|
paddle.disable_static(paddle.CPUPlace())
|
|
input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
|
|
input_2 = np.random.random([1, 4, 5]).astype("int32")
|
|
x_1 = paddle.to_tensor(input_1)
|
|
x_2 = paddle.to_tensor(input_2)
|
|
out_1 = paddle.numel(x_1)
|
|
out_2 = paddle.numel(x_2)
|
|
assert (np.array_equal(out_1.numpy().item(0), np.size(input_1)))
|
|
assert (np.array_equal(out_2.numpy().item(0), np.size(input_2)))
|
|
paddle.enable_static()
|
|
|
|
def test_error(self):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
def test_x_type():
|
|
shape = [1, 4, 5]
|
|
input_1 = np.random.random(shape).astype("int32")
|
|
out_1 = paddle.numel(input_1)
|
|
|
|
self.assertRaises(TypeError, test_x_type)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|