You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_op_name_conflict.py

100 lines
4.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import numpy as np
import unittest
class TestOpNameConflict(unittest.TestCase):
def test_conflict(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
x = fluid.data(name="x", shape=[1], dtype='float32')
y = fluid.data(name="y", shape=[1], dtype='float32')
z = fluid.data(name="z", shape=[1], dtype='float32')
m = fluid.layers.elementwise_add(x, y, name="add")
n = fluid.layers.elementwise_add(y, z, name="add")
p = m + n
place = fluid.CPUPlace()
exe = fluid.Executor(place)
m_v, n_v, p_v = exe.run(feed={
"x": np.ones((1), "float32") * 2,
"y": np.ones((1), "float32") * 3,
"z": np.ones((1), "float32") * 5
},
fetch_list=[m, n, p])
self.assertEqual(m_v[0], 5.0)
self.assertEqual(n_v[0], 8.0)
self.assertEqual(p_v[0], 13.0)
def test_layers(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
data = fluid.data(
name='data', shape=[None, 1, 2, 2], dtype='float32')
tensor = fluid.data(
name='tensor', shape=[None, 32, 64], dtype='float32')
x = fluid.data(
name='x', shape=[None, 1], dtype='float32', lod_level=1)
input_scale = fluid.layers.create_parameter(
shape=[1],
dtype="float32",
default_initializer=fluid.initializer.Constant(2.0))
input_bias = fluid.layers.create_parameter(
shape=[1],
dtype="float32",
default_initializer=fluid.initializer.Constant(0.5))
out_affine = fluid.layers.affine_channel(
data, scale=input_scale, bias=input_bias)
out_similarity = fluid.layers.similarity_focus(
input=data, axis=1, indexes=[0])
position_tensor = fluid.layers.add_position_encoding(
input=tensor, alpha=1.0, beta=1.0)
x_reversed = fluid.layers.sequence_reverse(x)
exe.run(fluid.default_startup_program())
test_program = fluid.default_main_program().clone(for_test=True)
x_d = fluid.create_lod_tensor(
np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'),
[[1, 3]], place)
outs = exe.run(
test_program,
fetch_list=[
out_affine, out_similarity, position_tensor, x_reversed
],
feed={
data.name: np.ones([1, 1, 2, 2]).astype('float32'),
tensor.name: np.ones([1, 32, 64]).astype('float32'),
x.name: x_d
},
return_numpy=False)
if __name__ == '__main__':
unittest.main()