You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
4.0 KiB
100 lines
4.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class TestOpNameConflict(unittest.TestCase):
|
|
def test_conflict(self):
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, startup):
|
|
x = fluid.data(name="x", shape=[1], dtype='float32')
|
|
y = fluid.data(name="y", shape=[1], dtype='float32')
|
|
z = fluid.data(name="z", shape=[1], dtype='float32')
|
|
|
|
m = fluid.layers.elementwise_add(x, y, name="add")
|
|
n = fluid.layers.elementwise_add(y, z, name="add")
|
|
p = m + n
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
m_v, n_v, p_v = exe.run(feed={
|
|
"x": np.ones((1), "float32") * 2,
|
|
"y": np.ones((1), "float32") * 3,
|
|
"z": np.ones((1), "float32") * 5
|
|
},
|
|
fetch_list=[m, n, p])
|
|
|
|
self.assertEqual(m_v[0], 5.0)
|
|
self.assertEqual(n_v[0], 8.0)
|
|
self.assertEqual(p_v[0], 13.0)
|
|
|
|
def test_layers(self):
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, startup):
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
data = fluid.data(
|
|
name='data', shape=[None, 1, 2, 2], dtype='float32')
|
|
tensor = fluid.data(
|
|
name='tensor', shape=[None, 32, 64], dtype='float32')
|
|
x = fluid.data(
|
|
name='x', shape=[None, 1], dtype='float32', lod_level=1)
|
|
|
|
input_scale = fluid.layers.create_parameter(
|
|
shape=[1],
|
|
dtype="float32",
|
|
default_initializer=fluid.initializer.Constant(2.0))
|
|
input_bias = fluid.layers.create_parameter(
|
|
shape=[1],
|
|
dtype="float32",
|
|
default_initializer=fluid.initializer.Constant(0.5))
|
|
out_affine = fluid.layers.affine_channel(
|
|
data, scale=input_scale, bias=input_bias)
|
|
out_similarity = fluid.layers.similarity_focus(
|
|
input=data, axis=1, indexes=[0])
|
|
position_tensor = fluid.layers.add_position_encoding(
|
|
input=tensor, alpha=1.0, beta=1.0)
|
|
x_reversed = fluid.layers.sequence_reverse(x)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
test_program = fluid.default_main_program().clone(for_test=True)
|
|
|
|
x_d = fluid.create_lod_tensor(
|
|
np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'),
|
|
[[1, 3]], place)
|
|
outs = exe.run(
|
|
test_program,
|
|
fetch_list=[
|
|
out_affine, out_similarity, position_tensor, x_reversed
|
|
],
|
|
feed={
|
|
data.name: np.ones([1, 1, 2, 2]).astype('float32'),
|
|
tensor.name: np.ones([1, 32, 64]).astype('float32'),
|
|
x.name: x_d
|
|
},
|
|
return_numpy=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|