You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pad_constant_like.py

104 lines
3.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest, check_out_dtype
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestPadConstantLikeOp(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "pad_constant_like"
self.inputs = {
'X': np.random.random(self.x_shape).astype("float64"),
'Y': np.random.random(self.y_shape).astype("float64")
}
self.attrs = {}
self.attrs['pad_value'] = self.pad_value
self.outputs = {
'Out': np.pad(self.inputs['Y'],
self.paddings,
mode='constant',
constant_values=self.pad_value)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['Y'], 'Out')
def initTestCase(self):
self.x_shape = (16, 40)
self.y_shape = (3, 40)
self.pad_value = 0.1
self.paddings = [(0, 13), (0, 0)]
class TestCase1(TestPadConstantLikeOp):
def initTestCase(self):
self.x_shape = (4, 3, 4, 5)
self.y_shape = (2, 3, 4, 5)
self.paddings = [(0, 2), (0, 0), (0, 0), (0, 0)]
self.pad_value = 0.5
class TestCase2(TestPadConstantLikeOp):
def initTestCase(self):
self.x_shape = (4, 3, 4, 10)
self.y_shape = (2, 3, 2, 10)
self.paddings = [(0, 2), (0, 0), (0, 2), (0, 0)]
self.pad_value = 0.5
class TestPadConstantLikeOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x_data = np.random.random((2, 2, 2, 2)).astype("float32")
y_data = np.random.random((2, 2, 2, 2)).astype("float32")
def test_Variable_x():
var_y = fluid.data(
name="data_y", shape=[2, 2, 2, 2], dtype="float32")
fluid.layers.pad_constant_like(x=x_data, y=var_y)
self.assertRaises(TypeError, test_Variable_x)
def test_Variable_y():
var_x = fluid.data(
name="data_x", shape=[2, 2, 2, 2], dtype="float32")
fluid.layers.pad_constant_like(x=var_x, y=y_data)
self.assertRaises(TypeError, test_Variable_y)
class TestOutDtype(unittest.TestCase):
def test_dtype(self):
api_fn = fluid.layers.pad_constant_like
check_out_dtype(
api_fn,
in_specs=[([2, 3, 2, 3], 'float64'), ([1, 3, 1, 3], )],
expect_dtypes=['float32', 'float64', 'int32', 'int64'],
target_index=1,
pad_value=0.)
if __name__ == '__main__':
unittest.main()