You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pad_op.py

117 lines
3.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestPadOp(OpTest):
def setUp(self):
self.initTestCase()
self.dtype = self.get_dtype()
self.op_type = "pad"
self.inputs = {'X': np.random.random(self.shape).astype(self.dtype), }
self.attrs = {}
self.attrs['paddings'] = np.array(self.paddings).flatten()
self.attrs['pad_value'] = self.pad_value
self.outputs = {
'Out': np.pad(self.inputs['X'],
self.paddings,
mode='constant',
constant_values=self.pad_value)
}
def get_dtype(self):
return np.float64
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (16, 16)
self.paddings = [(0, 1), (2, 3)]
self.pad_value = 0.0
class TestCase1(TestPadOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5)
self.paddings = [(0, 1), (2, 3), (2, 1), (1, 1)]
self.pad_value = 0.5
class TestCase2(TestPadOp):
def initTestCase(self):
self.shape = (5, 5, 5)
self.paddings = [(0, 0), (0, 0), (1, 2)]
self.pad_value = 1.0
class TestCase3(TestPadOp):
def initTestCase(self):
self.shape = (100)
self.paddings = [(0, 1)]
self.pad_value = 0.9
#----------------Pad Fp16----------------
def create_test_fp16(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestPadFp16(parent):
def get_dtype(self):
return np.float16
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out', max_relative_error=0.3)
cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
TestPadFp16.__name__ = cls_name
globals()[cls_name] = TestPadFp16
create_test_fp16(TestPadOp)
create_test_fp16(TestCase1)
create_test_fp16(TestCase2)
create_test_fp16(TestCase3)
class TestPadOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
input_data = np.random.random((2, 2)).astype("float32")
def test_Variable():
fluid.layers.pad(x=input_data, paddings=[1, 1, 1, 1])
self.assertRaises(TypeError, test_Variable)
data = fluid.data(name='data', shape=[4], dtype='float16')
fluid.layers.pad(x=data, paddings=[0, 1])
if __name__ == '__main__':
unittest.main()