You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_paddle_save_load.py

210 lines
6.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import os
import sys
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10
IMAGE_SIZE = 784
CLASS_NUM = 10
LARGE_PARAM = 2**26
def random_batch_reader():
def _get_random_inputs_and_labels():
np.random.seed(SEED)
image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (
BATCH_SIZE,
1, )).astype('int64')
return image, label
def __reader__():
for _ in range(BATCH_NUM):
batch_image, batch_label = _get_random_inputs_and_labels()
batch_image = paddle.to_tensor(batch_image)
batch_label = paddle.to_tensor(batch_label)
yield batch_image, batch_label
return __reader__
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
def forward(self, x):
return self._linear(x)
class LayerWithLargeParameters(paddle.nn.Layer):
def __init__(self):
super(LayerWithLargeParameters, self).__init__()
self._l = paddle.nn.Linear(10, LARGE_PARAM)
def forward(self, x):
y = self._l(x)
return y
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
class TestSaveLoadLargeParameters(unittest.TestCase):
def setUp(self):
pass
def test_large_parameters_paddle_save(self):
# enable dygraph mode
paddle.disable_static()
# create network
layer = LayerWithLargeParameters()
save_dict = layer.state_dict()
path = os.path.join("test_paddle_save_load_large_param_save",
"layer.pdparams")
paddle.save(layer.state_dict(), path)
dict_load = paddle.load(path)
# compare results before and after saving
for key, value in save_dict.items():
self.assertTrue(np.array_equal(dict_load[key], value.numpy()))
class TestSaveLoadPickle(unittest.TestCase):
def test_pickle_protocol(self):
# create network
layer = LinearNet()
save_dict = layer.state_dict()
path = os.path.join("test_paddle_save_load_pickle_protocol",
"layer.pdparams")
with self.assertRaises(ValueError):
paddle.save(save_dict, path, 2.0)
with self.assertRaises(ValueError):
paddle.save(save_dict, path, 1)
with self.assertRaises(ValueError):
paddle.save(save_dict, path, 5)
protocols = [2, ]
if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
protocols += [3, 4]
for protocol in protocols:
paddle.save(save_dict, path, protocol)
dict_load = paddle.load(path)
# compare results before and after saving
for key, value in save_dict.items():
self.assertTrue(np.array_equal(dict_load[key], value.numpy()))
class TestSaveLoad(unittest.TestCase):
def setUp(self):
# enable dygraph mode
paddle.disable_static()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def build_and_train_model(self):
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
# TODO: using new DataLoader cause unknown Timeout on windows, replace it
loader = random_batch_reader()
# train
train(layer, loader, loss_fn, adam)
return layer, adam
def check_load_state_dict(self, orig_dict, load_dict):
for var_name, value in orig_dict.items():
self.assertTrue(np.array_equal(value.numpy(), load_dict[var_name]))
def test_save_load(self):
layer, opt = self.build_and_train_model()
# save
layer_save_path = "test_paddle_save_load.linear.pdparams"
opt_save_path = "test_paddle_save_load.linear.pdopt"
layer_state_dict = layer.state_dict()
opt_state_dict = opt.state_dict()
paddle.save(layer_state_dict, layer_save_path)
paddle.save(opt_state_dict, opt_save_path)
# load
load_layer_state_dict = paddle.load(layer_save_path)
load_opt_state_dict = paddle.load(opt_save_path)
self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
self.check_load_state_dict(opt_state_dict, load_opt_state_dict)
# test save load in static mode
paddle.enable_static()
static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams"
paddle.save(layer_state_dict, static_save_path)
load_static_state_dict = paddle.load(static_save_path)
self.check_load_state_dict(layer_state_dict, load_static_state_dict)
# error test cases, some tests relay base test above
# 1. test save obj not dict error
test_list = [1, 2, 3]
with self.assertRaises(NotImplementedError):
paddle.save(test_list, "not_dict_error_path")
# 2. test save path format error
with self.assertRaises(ValueError):
paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/")
# 3. test load path not exist error
with self.assertRaises(ValueError):
paddle.load("test_paddle_save_load.linear.params")
# 4. test load old save path error
with self.assertRaises(ValueError):
paddle.load("test_paddle_save_load.linear")
if __name__ == '__main__':
unittest.main()