You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
6.5 KiB
210 lines
6.5 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.optimizer as opt
|
|
|
|
BATCH_SIZE = 16
|
|
BATCH_NUM = 4
|
|
EPOCH_NUM = 4
|
|
SEED = 10
|
|
|
|
IMAGE_SIZE = 784
|
|
CLASS_NUM = 10
|
|
|
|
LARGE_PARAM = 2**26
|
|
|
|
|
|
def random_batch_reader():
|
|
def _get_random_inputs_and_labels():
|
|
np.random.seed(SEED)
|
|
image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
|
|
label = np.random.randint(0, CLASS_NUM - 1, (
|
|
BATCH_SIZE,
|
|
1, )).astype('int64')
|
|
return image, label
|
|
|
|
def __reader__():
|
|
for _ in range(BATCH_NUM):
|
|
batch_image, batch_label = _get_random_inputs_and_labels()
|
|
batch_image = paddle.to_tensor(batch_image)
|
|
batch_label = paddle.to_tensor(batch_label)
|
|
yield batch_image, batch_label
|
|
|
|
return __reader__
|
|
|
|
|
|
class LinearNet(nn.Layer):
|
|
def __init__(self):
|
|
super(LinearNet, self).__init__()
|
|
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
|
|
|
|
def forward(self, x):
|
|
return self._linear(x)
|
|
|
|
|
|
class LayerWithLargeParameters(paddle.nn.Layer):
|
|
def __init__(self):
|
|
super(LayerWithLargeParameters, self).__init__()
|
|
self._l = paddle.nn.Linear(10, LARGE_PARAM)
|
|
|
|
def forward(self, x):
|
|
y = self._l(x)
|
|
return y
|
|
|
|
|
|
def train(layer, loader, loss_fn, opt):
|
|
for epoch_id in range(EPOCH_NUM):
|
|
for batch_id, (image, label) in enumerate(loader()):
|
|
out = layer(image)
|
|
loss = loss_fn(out, label)
|
|
loss.backward()
|
|
opt.step()
|
|
opt.clear_grad()
|
|
|
|
|
|
class TestSaveLoadLargeParameters(unittest.TestCase):
|
|
def setUp(self):
|
|
pass
|
|
|
|
def test_large_parameters_paddle_save(self):
|
|
# enable dygraph mode
|
|
paddle.disable_static()
|
|
# create network
|
|
layer = LayerWithLargeParameters()
|
|
save_dict = layer.state_dict()
|
|
|
|
path = os.path.join("test_paddle_save_load_large_param_save",
|
|
"layer.pdparams")
|
|
paddle.save(layer.state_dict(), path)
|
|
dict_load = paddle.load(path)
|
|
# compare results before and after saving
|
|
for key, value in save_dict.items():
|
|
self.assertTrue(np.array_equal(dict_load[key], value.numpy()))
|
|
|
|
|
|
class TestSaveLoadPickle(unittest.TestCase):
|
|
def test_pickle_protocol(self):
|
|
# create network
|
|
layer = LinearNet()
|
|
save_dict = layer.state_dict()
|
|
|
|
path = os.path.join("test_paddle_save_load_pickle_protocol",
|
|
"layer.pdparams")
|
|
|
|
with self.assertRaises(ValueError):
|
|
paddle.save(save_dict, path, 2.0)
|
|
|
|
with self.assertRaises(ValueError):
|
|
paddle.save(save_dict, path, 1)
|
|
|
|
with self.assertRaises(ValueError):
|
|
paddle.save(save_dict, path, 5)
|
|
|
|
protocols = [2, ]
|
|
if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
|
|
protocols += [3, 4]
|
|
for protocol in protocols:
|
|
paddle.save(save_dict, path, protocol)
|
|
dict_load = paddle.load(path)
|
|
# compare results before and after saving
|
|
for key, value in save_dict.items():
|
|
self.assertTrue(np.array_equal(dict_load[key], value.numpy()))
|
|
|
|
|
|
class TestSaveLoad(unittest.TestCase):
|
|
def setUp(self):
|
|
# enable dygraph mode
|
|
paddle.disable_static()
|
|
|
|
# config seed
|
|
paddle.seed(SEED)
|
|
paddle.framework.random._manual_program_seed(SEED)
|
|
|
|
def build_and_train_model(self):
|
|
# create network
|
|
layer = LinearNet()
|
|
loss_fn = nn.CrossEntropyLoss()
|
|
|
|
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
|
|
|
|
# create data loader
|
|
# TODO: using new DataLoader cause unknown Timeout on windows, replace it
|
|
loader = random_batch_reader()
|
|
|
|
# train
|
|
train(layer, loader, loss_fn, adam)
|
|
|
|
return layer, adam
|
|
|
|
def check_load_state_dict(self, orig_dict, load_dict):
|
|
for var_name, value in orig_dict.items():
|
|
self.assertTrue(np.array_equal(value.numpy(), load_dict[var_name]))
|
|
|
|
def test_save_load(self):
|
|
layer, opt = self.build_and_train_model()
|
|
|
|
# save
|
|
layer_save_path = "test_paddle_save_load.linear.pdparams"
|
|
opt_save_path = "test_paddle_save_load.linear.pdopt"
|
|
layer_state_dict = layer.state_dict()
|
|
opt_state_dict = opt.state_dict()
|
|
|
|
paddle.save(layer_state_dict, layer_save_path)
|
|
paddle.save(opt_state_dict, opt_save_path)
|
|
|
|
# load
|
|
load_layer_state_dict = paddle.load(layer_save_path)
|
|
load_opt_state_dict = paddle.load(opt_save_path)
|
|
|
|
self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
|
|
self.check_load_state_dict(opt_state_dict, load_opt_state_dict)
|
|
|
|
# test save load in static mode
|
|
paddle.enable_static()
|
|
static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams"
|
|
paddle.save(layer_state_dict, static_save_path)
|
|
load_static_state_dict = paddle.load(static_save_path)
|
|
self.check_load_state_dict(layer_state_dict, load_static_state_dict)
|
|
|
|
# error test cases, some tests relay base test above
|
|
# 1. test save obj not dict error
|
|
test_list = [1, 2, 3]
|
|
with self.assertRaises(NotImplementedError):
|
|
paddle.save(test_list, "not_dict_error_path")
|
|
|
|
# 2. test save path format error
|
|
with self.assertRaises(ValueError):
|
|
paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/")
|
|
|
|
# 3. test load path not exist error
|
|
with self.assertRaises(ValueError):
|
|
paddle.load("test_paddle_save_load.linear.params")
|
|
|
|
# 4. test load old save path error
|
|
with self.assertRaises(ValueError):
|
|
paddle.load("test_paddle_save_load.linear")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|