You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pixel_shuffle.py

220 lines
7.9 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn.functional as F
import paddle.fluid.core as core
import paddle.fluid as fluid
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
if data_format == "NCHW":
n, c, h, w = x.shape
new_shape = (n, c // (up_factor * up_factor), up_factor, up_factor, h,
w)
# reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
npresult = np.reshape(x, new_shape)
# transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
npresult = np.reshape(npresult, oshape)
return npresult
else:
n, h, w, c = x.shape
new_shape = (n, h, w, c // (up_factor * up_factor), up_factor,
up_factor)
# reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
npresult = np.reshape(x, new_shape)
# transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
npresult = np.reshape(npresult, oshape)
return npresult
class TestPixelShuffleOp(OpTest):
def setUp(self):
self.op_type = "pixel_shuffle"
self.init_data_format()
n, c, h, w = 2, 9, 4, 4
if self.format == "NCHW":
shape = [n, c, h, w]
if self.format == "NHWC":
shape = [n, h, w, c]
up_factor = 3
x = np.random.random(shape).astype("float64")
npresult = pixel_shuffle_np(x, up_factor, self.format)
self.inputs = {'X': x}
self.outputs = {'Out': npresult}
self.attrs = {'upscale_factor': up_factor, "data_format": self.format}
def init_data_format(self):
self.format = "NCHW"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestChannelLast(TestPixelShuffleOp):
def init_data_format(self):
self.format = "NHWC"
class TestPixelShuffleAPI(unittest.TestCase):
def setUp(self):
self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")
def test_static_graph_functional(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x_1 = paddle.fluid.data(name="x", shape=[2, 9, 4, 4], dtype="float64")
x_2 = paddle.fluid.data(name="x2", shape=[2, 4, 4, 9], dtype="float64")
out_1 = F.pixel_shuffle(x_1, 3)
out_2 = F.pixel_shuffle(x_2, 3, "NHWC")
exe = paddle.static.Executor(place=place)
res_1 = exe.run(fluid.default_main_program(),
feed={"x": self.x_1_np},
fetch_list=out_1,
use_prune=True)
res_2 = exe.run(fluid.default_main_program(),
feed={"x2": self.x_2_np},
fetch_list=out_2,
use_prune=True)
assert np.allclose(res_1, self.out_1_np)
assert np.allclose(res_2, self.out_2_np)
# same test between layer and functional in this op.
def test_static_graph_layer(self):
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x_1 = paddle.fluid.data(name="x", shape=[2, 9, 4, 4], dtype="float64")
x_2 = paddle.fluid.data(name="x2", shape=[2, 4, 4, 9], dtype="float64")
# init instance
ps_1 = paddle.nn.PixelShuffle(3)
ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
out_1 = ps_1(x_1)
out_2 = ps_2(x_2)
out_1_np = pixel_shuffle_np(self.x_1_np, 3)
out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")
exe = paddle.static.Executor(place=place)
res_1 = exe.run(fluid.default_main_program(),
feed={"x": self.x_1_np},
fetch_list=out_1,
use_prune=True)
res_2 = exe.run(fluid.default_main_program(),
feed={"x2": self.x_2_np},
fetch_list=out_2,
use_prune=True)
assert np.allclose(res_1, out_1_np)
assert np.allclose(res_2, out_2_np)
def run_dygraph(self, up_factor, data_format):
n, c, h, w = 2, 9, 4, 4
if data_format == "NCHW":
shape = [n, c, h, w]
if data_format == "NHWC":
shape = [n, h, w, c]
x = np.random.random(shape).astype("float64")
npresult = pixel_shuffle_np(x, up_factor, data_format)
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.disable_static(place=place)
pixel_shuffle = paddle.nn.PixelShuffle(
up_factor, data_format=data_format)
result = pixel_shuffle(paddle.to_tensor(x))
self.assertTrue(np.allclose(result.numpy(), npresult))
result_functional = F.pixel_shuffle(
paddle.to_tensor(x), 3, data_format)
self.assertTrue(np.allclose(result_functional.numpy(), npresult))
def test_dygraph1(self):
self.run_dygraph(3, "NCHW")
def test_dygraph2(self):
self.run_dygraph(3, "NHWC")
class TestPixelShuffleError(unittest.TestCase):
def test_error_functional(self):
def error_upscale_factor():
with paddle.fluid.dygraph.guard():
x = np.random.random([2, 9, 4, 4]).astype("float64")
pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)
self.assertRaises(TypeError, error_upscale_factor)
def error_data_format():
with paddle.fluid.dygraph.guard():
x = np.random.random([2, 9, 4, 4]).astype("float64")
pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")
self.assertRaises(ValueError, error_data_format)
def test_error_layer(self):
def error_upscale_factor_layer():
with paddle.fluid.dygraph.guard():
x = np.random.random([2, 9, 4, 4]).astype("float64")
ps = paddle.nn.PixelShuffle(3.33)
self.assertRaises(TypeError, error_upscale_factor_layer)
def error_data_format_layer():
with paddle.fluid.dygraph.guard():
x = np.random.random([2, 9, 4, 4]).astype("float64")
ps = paddle.nn.PixelShuffle(3, "MEOW")
self.assertRaises(ValueError, error_data_format_layer)
if __name__ == '__main__':
unittest.main()