You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pool3d_api.py

477 lines
18 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.nn.functional import avg_pool3d, max_pool3d
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive, avg_pool3D_forward_naive, max_pool3D_forward_naive
class TestPool3D_API(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_avg_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='avg')
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))
def check_avg_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(input, kernel_size=2, stride=2, padding="SAME")
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='avg',
padding_algorithm="SAME")
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
kernel_size=2, stride=None, padding="SAME")
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(
input,
kernel_size=2,
stride=2,
padding=1,
ceil_mode=False,
exclusive=True)
result_np = avg_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[1, 1, 1],
ceil_mode=False,
exclusive=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
kernel_size=2,
stride=None,
padding=1,
ceil_mode=False,
exclusive=True)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_ceilmode_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = avg_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
kernel_size=2, stride=None, padding=0, ceil_mode=True)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
result = max_pool3d(input, kernel_size=2, stride=2, padding=0)
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={"input": input_np},
fetch_list=[result])
self.assertTrue(np.allclose(fetches[0], result_np))
def check_max_dygraph_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(input, kernel_size=2, stride=2, padding=0)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
kernel_size=2, stride=None, padding=0)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_ndhwc_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(
np.transpose(input_np, [0, 2, 3, 4, 1]))
result = max_pool3d(
input,
kernel_size=2,
stride=2,
padding=0,
data_format="NDHWC",
return_mask=False)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')
self.assertTrue(
np.allclose(
np.transpose(result.numpy(), [0, 4, 1, 2, 3]), result_np))
def check_max_dygraph_ceilmode_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = max_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
kernel_size=2, stride=None, padding=0, ceil_mode=True)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(
input, kernel_size=2, stride=2, padding=1, ceil_mode=False)
result_np = max_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[1, 1, 1],
ceil_mode=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
kernel_size=2, stride=None, padding=1, ceil_mode=False)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_stride_is_none(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result, indices = max_pool3d(
input,
kernel_size=2,
stride=None,
padding="SAME",
return_mask=True)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max',
padding_algorithm="SAME")
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
kernel_size=2, stride=2, padding=0)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_padding(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
padding = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
kernel_size=2, stride=2, padding=0)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
padding = [0, 0, 0, 0, 0, 0]
result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_divisor(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
padding = 0
result = avg_pool3d(
input,
kernel_size=2,
stride=2,
padding=padding,
divisor_override=8)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='avg')
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
kernel_size=2, stride=2, padding=0)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
padding = [0, 0, 0, 0, 0, 0]
result = avg_pool3d(
input,
kernel_size=2,
stride=2,
padding=padding,
divisor_override=8)
self.assertTrue(np.allclose(result.numpy(), result_np))
def test_pool3d(self):
for place in self.places:
self.check_max_dygraph_results(place)
self.check_avg_dygraph_results(place)
self.check_max_static_results(place)
self.check_avg_static_results(place)
self.check_max_dygraph_stride_is_none(place)
self.check_max_dygraph_padding(place)
self.check_avg_divisor(place)
self.check_max_dygraph_ndhwc_results(place)
self.check_max_dygraph_ceilmode_results(place)
class TestPool3DError_API(unittest.TestCase):
def test_error_api(self):
def run1():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
res_pd = avg_pool3d(
input_pd, kernel_size=2, stride=2, padding=padding)
self.assertRaises(ValueError, run1)
def run2():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
res_pd = avg_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NCDHW')
self.assertRaises(ValueError, run2)
def run3():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
res_pd = avg_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=padding,
data_format='NDHWC')
self.assertRaises(ValueError, run3)
def run4():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = avg_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=0,
data_format='NNNN')
self.assertRaises(ValueError, run4)
def run5():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=0,
data_format='NNNN')
self.assertRaises(ValueError, run5)
def run6():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = avg_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding="padding",
data_format='NNNN')
self.assertRaises(ValueError, run6)
def run7():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding="padding",
data_format='NNNN')
self.assertRaises(ValueError, run7)
def run8():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = avg_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding="VALID",
ceil_mode=True,
data_format='NNNN')
self.assertRaises(ValueError, run8)
def run9():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding="VALID",
ceil_mode=True,
data_format='NNNN')
self.assertRaises(ValueError, run9)
def run10():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=0,
data_format='NDHWC',
return_mask=True)
self.assertRaises(ValueError, run10)
if __name__ == '__main__':
unittest.main()