You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
477 lines
18 KiB
477 lines
18 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.nn.functional import avg_pool3d, max_pool3d
|
|
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive, avg_pool3D_forward_naive, max_pool3D_forward_naive
|
|
|
|
|
|
class TestPool3D_API(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(123)
|
|
self.places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
def check_avg_static_results(self, place):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
input = fluid.data(
|
|
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
|
|
result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)
|
|
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='avg')
|
|
|
|
exe = fluid.Executor(place)
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
feed={"input": input_np},
|
|
fetch_list=[result])
|
|
self.assertTrue(np.allclose(fetches[0], result_np))
|
|
|
|
def check_avg_dygraph_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = avg_pool3d(input, kernel_size=2, stride=2, padding="SAME")
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='avg',
|
|
padding_algorithm="SAME")
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
|
|
kernel_size=2, stride=None, padding="SAME")
|
|
result = avg_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_avg_dygraph_padding_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = avg_pool3d(
|
|
input,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=1,
|
|
ceil_mode=False,
|
|
exclusive=True)
|
|
|
|
result_np = avg_pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[1, 1, 1],
|
|
ceil_mode=False,
|
|
exclusive=False)
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
|
|
kernel_size=2,
|
|
stride=None,
|
|
padding=1,
|
|
ceil_mode=False,
|
|
exclusive=True)
|
|
result = avg_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_avg_dygraph_ceilmode_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = avg_pool3d(
|
|
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
|
|
result_np = avg_pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
ceil_mode=True)
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
|
|
kernel_size=2, stride=None, padding=0, ceil_mode=True)
|
|
result = avg_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_max_static_results(self, place):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
input = fluid.data(
|
|
name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
|
|
result = max_pool3d(input, kernel_size=2, stride=2, padding=0)
|
|
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='max')
|
|
|
|
exe = fluid.Executor(place)
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
feed={"input": input_np},
|
|
fetch_list=[result])
|
|
self.assertTrue(np.allclose(fetches[0], result_np))
|
|
|
|
def check_max_dygraph_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = max_pool3d(input, kernel_size=2, stride=2, padding=0)
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='max')
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
|
|
kernel_size=2, stride=None, padding=0)
|
|
result = max_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_max_dygraph_ndhwc_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(
|
|
np.transpose(input_np, [0, 2, 3, 4, 1]))
|
|
result = max_pool3d(
|
|
input,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=0,
|
|
data_format="NDHWC",
|
|
return_mask=False)
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='max')
|
|
|
|
self.assertTrue(
|
|
np.allclose(
|
|
np.transpose(result.numpy(), [0, 4, 1, 2, 3]), result_np))
|
|
|
|
def check_max_dygraph_ceilmode_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = max_pool3d(
|
|
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
|
|
result_np = max_pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
ceil_mode=True)
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
|
|
kernel_size=2, stride=None, padding=0, ceil_mode=True)
|
|
result = max_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_max_dygraph_padding_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = max_pool3d(
|
|
input, kernel_size=2, stride=2, padding=1, ceil_mode=False)
|
|
|
|
result_np = max_pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[1, 1, 1],
|
|
ceil_mode=False)
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
|
|
kernel_size=2, stride=None, padding=1, ceil_mode=False)
|
|
result = max_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_max_dygraph_stride_is_none(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result, indices = max_pool3d(
|
|
input,
|
|
kernel_size=2,
|
|
stride=None,
|
|
padding="SAME",
|
|
return_mask=True)
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='max',
|
|
padding_algorithm="SAME")
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
|
|
kernel_size=2, stride=2, padding=0)
|
|
result = max_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_max_dygraph_padding(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
padding = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
|
|
result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='max')
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
max_pool3d_dg = paddle.nn.layer.MaxPool3D(
|
|
kernel_size=2, stride=2, padding=0)
|
|
result = max_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
padding = [0, 0, 0, 0, 0, 0]
|
|
result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_avg_divisor(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
padding = 0
|
|
result = avg_pool3d(
|
|
input,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=padding,
|
|
divisor_override=8)
|
|
|
|
result_np = pool3D_forward_naive(
|
|
input_np,
|
|
ksize=[2, 2, 2],
|
|
strides=[2, 2, 2],
|
|
paddings=[0, 0, 0],
|
|
pool_type='avg')
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
|
|
kernel_size=2, stride=2, padding=0)
|
|
result = avg_pool3d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
padding = [0, 0, 0, 0, 0, 0]
|
|
result = avg_pool3d(
|
|
input,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=padding,
|
|
divisor_override=8)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def test_pool3d(self):
|
|
for place in self.places:
|
|
|
|
self.check_max_dygraph_results(place)
|
|
self.check_avg_dygraph_results(place)
|
|
self.check_max_static_results(place)
|
|
self.check_avg_static_results(place)
|
|
self.check_max_dygraph_stride_is_none(place)
|
|
self.check_max_dygraph_padding(place)
|
|
self.check_avg_divisor(place)
|
|
self.check_max_dygraph_ndhwc_results(place)
|
|
self.check_max_dygraph_ceilmode_results(place)
|
|
|
|
|
|
class TestPool3DError_API(unittest.TestCase):
|
|
def test_error_api(self):
|
|
def run1():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
|
|
res_pd = avg_pool3d(
|
|
input_pd, kernel_size=2, stride=2, padding=padding)
|
|
|
|
self.assertRaises(ValueError, run1)
|
|
|
|
def run2():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
|
|
res_pd = avg_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=padding,
|
|
data_format='NCDHW')
|
|
|
|
self.assertRaises(ValueError, run2)
|
|
|
|
def run3():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
|
|
res_pd = avg_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=padding,
|
|
data_format='NDHWC')
|
|
|
|
self.assertRaises(ValueError, run3)
|
|
|
|
def run4():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = avg_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=0,
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run4)
|
|
|
|
def run5():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = max_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=0,
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run5)
|
|
|
|
def run6():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = avg_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding="padding",
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run6)
|
|
|
|
def run7():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = max_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding="padding",
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run7)
|
|
|
|
def run8():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = avg_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding="VALID",
|
|
ceil_mode=True,
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run8)
|
|
|
|
def run9():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = max_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding="VALID",
|
|
ceil_mode=True,
|
|
data_format='NNNN')
|
|
|
|
self.assertRaises(ValueError, run9)
|
|
|
|
def run10():
|
|
with fluid.dygraph.guard():
|
|
input_np = np.random.uniform(
|
|
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
|
|
input_pd = fluid.dygraph.to_variable(input_np)
|
|
res_pd = max_pool3d(
|
|
input_pd,
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=0,
|
|
data_format='NDHWC',
|
|
return_mask=True)
|
|
|
|
self.assertRaises(ValueError, run10)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|