You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.5 KiB
149 lines
5.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
from paddle.fluid import core
|
|
from paddle.fluid.framework import switch_main_program
|
|
from simple_nets import simple_fc_net, init_data
|
|
from paddle.static import Program, program_guard
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
class TestPrintOpCPU(unittest.TestCase):
|
|
def setUp(self):
|
|
self.place = paddle.CPUPlace()
|
|
self.x_tensor = fluid.core.LoDTensor()
|
|
tensor_np = np.random.random(size=(2, 3)).astype('float32')
|
|
self.x_tensor.set(tensor_np, self.place)
|
|
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
|
|
|
|
def build_network(self, only_forward, **kargs):
|
|
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
|
|
x.stop_gradient = False
|
|
paddle.static.Print(input=x, **kargs)
|
|
loss = paddle.mean(x)
|
|
paddle.static.append_backward(loss=loss)
|
|
return loss
|
|
|
|
def test_forward(self):
|
|
switch_main_program(Program())
|
|
printed = self.build_network(True, print_phase='forward')
|
|
exe = paddle.static.Executor(self.place)
|
|
outs = exe.run(feed={'x': self.x_tensor},
|
|
fetch_list=[printed],
|
|
return_numpy=False)
|
|
|
|
def test_backward(self):
|
|
switch_main_program(Program())
|
|
loss = self.build_network(False, print_phase='backward')
|
|
exe = paddle.static.Executor(self.place)
|
|
outs = exe.run(feed={'x': self.x_tensor},
|
|
fetch_list=[loss],
|
|
return_numpy=False)
|
|
|
|
def test_all_parameters(self):
|
|
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
|
|
x.stop_gradient = False
|
|
|
|
for print_tensor_name in [True, False]:
|
|
for print_tensor_type in [True, False]:
|
|
for print_tensor_shape in [True, False]:
|
|
for print_tensor_lod in [True, False]:
|
|
paddle.static.Print(
|
|
input=x,
|
|
print_tensor_name=print_tensor_name,
|
|
print_tensor_type=print_tensor_type,
|
|
print_tensor_shape=print_tensor_shape,
|
|
print_tensor_lod=print_tensor_lod, )
|
|
loss = paddle.mean(x)
|
|
paddle.static.append_backward(loss=loss)
|
|
exe = paddle.static.Executor(self.place)
|
|
outs = exe.run(feed={'x': self.x_tensor},
|
|
fetch_list=[loss],
|
|
return_numpy=False)
|
|
|
|
def test_no_summarize(self):
|
|
switch_main_program(Program())
|
|
printed = self.build_network(True, summarize=-1, print_phase='forward')
|
|
exe = paddle.static.Executor(self.place)
|
|
outs = exe.run(feed={'x': self.x_tensor},
|
|
fetch_list=[printed],
|
|
return_numpy=False)
|
|
|
|
|
|
class TestPrintOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
# The input type of Print_op must be Variable.
|
|
x1 = fluid.create_lod_tensor(
|
|
np.array([[-1]]), [[1]], paddle.CPUPlace())
|
|
self.assertRaises(TypeError, paddle.static.Print, x1)
|
|
# The input dtype of Print_op must be float32, float64, int32_t, int64_t or bool.
|
|
x2 = paddle.static.data(name='x2', shape=[4], dtype="float16")
|
|
self.assertRaises(TypeError, paddle.static.Print, x2)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestPrintOpGPU(TestPrintOpCPU):
|
|
def setUp(self):
|
|
self.place = paddle.CUDAPlace(0)
|
|
self.x_tensor = fluid.core.LoDTensor()
|
|
tensor_np = np.random.random(size=(2, 3)).astype('float32')
|
|
self.x_tensor.set(tensor_np, self.place)
|
|
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
|
|
|
|
|
|
class TestPrintOpBackward(unittest.TestCase):
|
|
def check_backward(self, use_cuda):
|
|
main = paddle.static.Program()
|
|
startup = paddle.static.Program()
|
|
|
|
with program_guard(main, startup):
|
|
loss = simple_fc_net()
|
|
loss = paddle.static.Print(loss)
|
|
paddle.optimizer.Adam().minimize(loss)
|
|
|
|
print_ops = [op for op in main.blocks[0].ops if op.type == u'print']
|
|
assert len(print_ops) == 2, "The number of print op should be 2"
|
|
|
|
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
|
|
exe = paddle.static.Executor(place)
|
|
exe.run(startup)
|
|
|
|
binary = paddle.static.CompiledProgram(main).with_data_parallel(
|
|
loss_name=loss.name)
|
|
|
|
img, label = init_data()
|
|
feed_dict = {"image": img, "label": label}
|
|
exe.run(binary, feed_dict)
|
|
|
|
def test_fw_bw(self):
|
|
if paddle.is_compiled_with_cuda():
|
|
self.check_backward(use_cuda=True)
|
|
self.check_backward(use_cuda=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|