You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_prod_op.py

133 lines
5.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import unittest
import numpy as np
class TestProdOp(unittest.TestCase):
def setUp(self):
self.input = np.random.random(size=(10, 10, 5)).astype(np.float32)
def run_imperative(self):
input = paddle.to_tensor(self.input)
dy_result = paddle.prod(input)
expected_result = np.prod(self.input)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=1)
expected_result = np.prod(self.input, axis=1)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=-1)
expected_result = np.prod(self.input, axis=-1)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=[0, 1])
expected_result = np.prod(self.input, axis=(0, 1))
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=1, keepdim=True)
expected_result = np.prod(self.input, axis=1, keepdims=True)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=1, dtype='int64')
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
dy_result = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
expected_result = np.prod(
self.input, axis=1, keepdims=True, dtype=np.int64)
self.assertTrue(np.allclose(dy_result.numpy(), expected_result))
def run_static(self, use_gpu=False):
input = paddle.fluid.data(name='input', shape=[10, 10, 5], dtype='float32')
result0 = paddle.prod(input)
result1 = paddle.prod(input, axis=1)
result2 = paddle.prod(input, axis=-1)
result3 = paddle.prod(input, axis=[0, 1])
result4 = paddle.prod(input, axis=1, keepdim=True)
result5 = paddle.prod(input, axis=1, dtype='int64')
result6 = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
static_result = exe.run(feed={"input": self.input},
fetch_list=[
result0, result1, result2, result3, result4,
result5, result6
])
expected_result = np.prod(self.input)
self.assertTrue(np.allclose(static_result[0], expected_result))
expected_result = np.prod(self.input, axis=1)
self.assertTrue(np.allclose(static_result[1], expected_result))
expected_result = np.prod(self.input, axis=-1)
self.assertTrue(np.allclose(static_result[2], expected_result))
expected_result = np.prod(self.input, axis=(0, 1))
self.assertTrue(np.allclose(static_result[3], expected_result))
expected_result = np.prod(self.input, axis=1, keepdims=True)
self.assertTrue(np.allclose(static_result[4], expected_result))
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
self.assertTrue(np.allclose(static_result[5], expected_result))
expected_result = np.prod(
self.input, axis=1, keepdims=True, dtype=np.int64)
self.assertTrue(np.allclose(static_result[6], expected_result))
def test_cpu(self):
paddle.disable_static(place=paddle.CPUPlace())
self.run_imperative()
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
self.run_static()
def test_gpu(self):
if not paddle.fluid.core.is_compiled_with_cuda():
return
paddle.disable_static(place=paddle.CUDAPlace(0))
self.run_imperative()
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
self.run_static(use_gpu=True)
class TestProdOpError(unittest.TestCase):
def test_error(self):
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
x = paddle.fluid.data(name='x', shape=[2, 2, 4], dtype='float32')
bool_x = paddle.fluid.data(name='bool_x', shape=[2, 2, 4], dtype='bool')
# The argument x shoule be a Tensor
self.assertRaises(TypeError, paddle.prod, [1])
# The data type of x should be float32, float64, int32, int64
self.assertRaises(TypeError, paddle.prod, bool_x)
# The argument axis's type shoule be int ,list or tuple
self.assertRaises(TypeError, paddle.prod, x, 1.5)
# The argument dtype of prod_op should be float32, float64, int32 or int64.
self.assertRaises(TypeError, paddle.prod, x, 'bool')
if __name__ == "__main__":
unittest.main()