You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
10 KiB
284 lines
10 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import unittest
|
|
from py_precise_roi_pool import PyPrRoIPool
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
|
|
|
|
class TestPRROIPoolOp(OpTest):
|
|
def set_data(self):
|
|
self.init_test_case()
|
|
self.make_rois()
|
|
self.prRoIPool = PyPrRoIPool()
|
|
self.outs = self.prRoIPool.compute(
|
|
self.x, self.rois, self.output_channels, self.spatial_scale,
|
|
self.pooled_height, self.pooled_width).astype('float32')
|
|
self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
|
|
self.attrs = {
|
|
'output_channels': self.output_channels,
|
|
'spatial_scale': self.spatial_scale,
|
|
'pooled_height': self.pooled_height,
|
|
'pooled_width': self.pooled_width
|
|
}
|
|
self.outputs = {'Out': self.outs}
|
|
|
|
def init_test_case(self):
|
|
self.batch_size = 3
|
|
self.channels = 3 * 2 * 2
|
|
self.height = 12
|
|
self.width = 16
|
|
|
|
self.x_dim = [self.batch_size, self.channels, self.height, self.width]
|
|
|
|
self.spatial_scale = 1.0 / 2.0
|
|
self.output_channels = self.channels
|
|
self.pooled_height = 4
|
|
self.pooled_width = 4
|
|
|
|
self.x = np.random.random(self.x_dim).astype('float32')
|
|
|
|
def make_rois(self):
|
|
rois = []
|
|
self.rois_lod = [[]]
|
|
for bno in range(self.batch_size):
|
|
self.rois_lod[0].append(bno + 1)
|
|
for i in range(bno + 1):
|
|
x1 = np.random.uniform(
|
|
0, self.width // self.spatial_scale - self.pooled_width)
|
|
y1 = np.random.uniform(
|
|
0, self.height // self.spatial_scale - self.pooled_height)
|
|
|
|
x2 = np.random.uniform(x1 + self.pooled_width,
|
|
self.width // self.spatial_scale)
|
|
y2 = np.random.uniform(y1 + self.pooled_height,
|
|
self.height // self.spatial_scale)
|
|
roi = [bno, x1, y1, x2, y2]
|
|
rois.append(roi)
|
|
self.rois_num = len(rois)
|
|
self.rois = np.array(rois).astype('float32')
|
|
|
|
def setUp(self):
|
|
self.op_type = 'prroi_pool'
|
|
self.set_data()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_backward(self):
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self.check_grad_with_place(place, ['X'], 'Out')
|
|
|
|
def run_net(self, place):
|
|
with program_guard(Program(), Program()):
|
|
x = fluid.layers.data(
|
|
name="X",
|
|
shape=[self.channels, self.height, self.width],
|
|
dtype="float32")
|
|
rois = fluid.layers.data(
|
|
name="ROIs", shape=[4], dtype="float32", lod_level=1)
|
|
output = fluid.layers.prroi_pool(x, rois, 0.25, 2, 2)
|
|
loss = fluid.layers.mean(output)
|
|
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
|
|
optimizer.minimize(loss)
|
|
input_x = fluid.create_lod_tensor(self.x, [], place)
|
|
input_rois = fluid.create_lod_tensor(self.rois[:, 1:5],
|
|
self.rois_lod, place)
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
exe.run(fluid.default_main_program(),
|
|
{'X': input_x,
|
|
"ROIs": input_rois})
|
|
|
|
def test_net(self):
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self.run_net(place)
|
|
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
x = fluid.layers.data(
|
|
name="x", shape=[245, 30, 30], dtype="float32")
|
|
rois = fluid.layers.data(
|
|
name="rois", shape=[4], dtype="float32", lod_level=1)
|
|
# spatial_scale must be float type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7,
|
|
7)
|
|
# pooled_height must be int type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
|
|
0.7, 7)
|
|
# pooled_width must be int type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
|
|
7, 0.7)
|
|
|
|
|
|
class TestPRROIPoolOpTensorRoIs(OpTest):
|
|
def set_data(self):
|
|
self.init_test_case()
|
|
self.make_rois()
|
|
self.prRoIPool = PyPrRoIPool()
|
|
self.outs = self.prRoIPool.compute(
|
|
self.x, self.rois, self.output_channels, self.spatial_scale,
|
|
self.pooled_height, self.pooled_width).astype('float32')
|
|
|
|
self.rois_index = np.array(self.rois_lod).reshape([-1]).astype(np.int64)
|
|
self.inputs = {
|
|
'X': self.x,
|
|
'ROIs': self.rois[:, 1:5],
|
|
'BatchRoINums': self.rois_index
|
|
}
|
|
self.attrs = {
|
|
'output_channels': self.output_channels,
|
|
'spatial_scale': self.spatial_scale,
|
|
'pooled_height': self.pooled_height,
|
|
'pooled_width': self.pooled_width
|
|
}
|
|
self.outputs = {'Out': self.outs}
|
|
|
|
def init_test_case(self):
|
|
self.batch_size = 3
|
|
self.channels = 3 * 2 * 2
|
|
self.height = 12
|
|
self.width = 16
|
|
|
|
self.x_dim = [self.batch_size, self.channels, self.height, self.width]
|
|
|
|
self.spatial_scale = 1.0 / 2.0
|
|
self.output_channels = self.channels
|
|
self.pooled_height = 4
|
|
self.pooled_width = 4
|
|
|
|
self.x = np.random.random(self.x_dim).astype('float32')
|
|
|
|
def make_rois(self):
|
|
rois = []
|
|
self.rois_lod = []
|
|
for bno in range(self.batch_size):
|
|
self.rois_lod.append(bno + 1)
|
|
for i in range(bno + 1):
|
|
x1 = np.random.uniform(
|
|
0, self.width // self.spatial_scale - self.pooled_width)
|
|
y1 = np.random.uniform(
|
|
0, self.height // self.spatial_scale - self.pooled_height)
|
|
|
|
x2 = np.random.uniform(x1 + self.pooled_width,
|
|
self.width // self.spatial_scale)
|
|
y2 = np.random.uniform(y1 + self.pooled_height,
|
|
self.height // self.spatial_scale)
|
|
roi = [bno, x1, y1, x2, y2]
|
|
rois.append(roi)
|
|
self.rois_num = len(rois)
|
|
self.rois = np.array(rois).astype('float32')
|
|
|
|
def setUp(self):
|
|
self.op_type = 'prroi_pool'
|
|
self.set_data()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_backward(self):
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self.check_grad_with_place(place, ['X'], 'Out')
|
|
|
|
def run_net(self, place):
|
|
with program_guard(Program(), Program()):
|
|
x = fluid.layers.data(
|
|
name="X",
|
|
shape=[self.channels, self.height, self.width],
|
|
dtype="float32")
|
|
rois = fluid.layers.data(name="ROIs", shape=[4], dtype="float32")
|
|
rois_index = fluid.layers.data(
|
|
name='rois_idx', shape=[], dtype="int64")
|
|
output = fluid.layers.prroi_pool(
|
|
x, rois, 0.25, 2, 2, batch_roi_nums=rois_index)
|
|
loss = fluid.layers.mean(output)
|
|
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
|
|
optimizer.minimize(loss)
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
exe.run(fluid.default_main_program(), {
|
|
'X': self.x,
|
|
"ROIs": self.rois[:, 1:5],
|
|
"rois_idx": self.rois_index
|
|
})
|
|
|
|
def test_net(self):
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for place in places:
|
|
self.run_net(place)
|
|
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
x = fluid.layers.data(
|
|
name="x", shape=[245, 30, 30], dtype="float32")
|
|
rois = fluid.layers.data(
|
|
name="rois", shape=[4], dtype="float32", lod_level=1)
|
|
# spatial_scale must be float type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7,
|
|
7)
|
|
# pooled_height must be int type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
|
|
0.7, 7)
|
|
# pooled_width must be int type
|
|
self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 0.25,
|
|
7, 0.7)
|
|
|
|
def test_bad_x():
|
|
x = fluid.layers.data(
|
|
name='data1',
|
|
shape=[2, 3, 16, 16],
|
|
dtype='int64',
|
|
append_batch_size=False)
|
|
label = fluid.layers.data(
|
|
name='label1',
|
|
shape=[2, 4],
|
|
dtype='float32',
|
|
lod_level=1,
|
|
append_batch_size=False)
|
|
output = fluid.layers.prroi_pool(x, label, 0.25, 2, 2)
|
|
|
|
self.assertRaises(TypeError, test_bad_x)
|
|
|
|
def test_bad_y():
|
|
x = fluid.layers.data(
|
|
name='data2',
|
|
shape=[2, 3, 16, 16],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
label = [[1, 2, 3, 4], [2, 3, 4, 5]]
|
|
output = fluid.layers.prroi_pool(x, label, 0.25, 2, 2)
|
|
|
|
self.assertRaises(TypeError, test_bad_y)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|