You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
75 lines
2.5 KiB
75 lines
2.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import os
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class TestQueue(unittest.TestCase):
|
|
def test_eq(self):
|
|
"""
|
|
test queue_generator op, enqueue op and dequeue op.
|
|
"""
|
|
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
value = np.random.rand(1)
|
|
with fluid.program_guard(main_program, startup_program):
|
|
data_in = layers.create_global_var(
|
|
shape=[2, 3],
|
|
value=value,
|
|
dtype="float32",
|
|
persistable=True,
|
|
name='var_in')
|
|
data_out = layers.create_global_var(
|
|
shape=[2, 3],
|
|
value=value - 1.0,
|
|
dtype="float32",
|
|
persistable=True,
|
|
name='var_out')
|
|
startup_block = startup_program.block(0)
|
|
queue_name = 'blocking_queue'
|
|
startup_block.create_var(
|
|
name=queue_name, persistable=True, type=core.VarDesc.VarType.RAW)
|
|
startup_block.append_op(
|
|
type="queue_generator", attrs={'names': [queue_name]})
|
|
block = main_program.block(0)
|
|
block.append_op(
|
|
type='enqueue',
|
|
inputs={'X': data_in},
|
|
attrs={'queue_name': queue_name})
|
|
block.append_op(
|
|
type='dequeue',
|
|
outputs={'Out': [data_out]},
|
|
attrs={'queue_name': queue_name})
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_program)
|
|
ret = exe.run(main_program, fetch_list=[data_out.name])
|
|
self.assertTrue(
|
|
np.allclose(np.asarray(ret), np.full((2, 3), value, np.float32)))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|