You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_randn_op.py

90 lines
3.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from paddle.static import program_guard, Program
class TestRandnOp(unittest.TestCase):
def test_api(self):
shape = [1000, 784]
train_program = Program()
startup_program = Program()
with program_guard(train_program, startup_program):
x1 = paddle.randn(shape, 'float32')
x2 = paddle.randn(shape, 'float64')
dim_1 = paddle.fluid.layers.fill_constant([1], "int64", 20)
dim_2 = paddle.fluid.layers.fill_constant([1], "int32", 50)
x3 = paddle.randn([dim_1, dim_2, 784])
var_shape = paddle.static.data('X', [2], 'int32')
x4 = paddle.randn(var_shape)
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.static.Executor(place)
res = exe.run(train_program,
feed={'X': np.array(
shape, dtype='int32')},
fetch_list=[x1, x2, x3, x4])
for out in res:
self.assertAlmostEqual(np.mean(out), .0, delta=0.1)
self.assertAlmostEqual(np.std(out), 1., delta=0.1)
class TestRandnOpForDygraph(unittest.TestCase):
def test_api(self):
shape = [1000, 784]
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
paddle.disable_static(place)
x1 = paddle.randn(shape, 'float32')
x2 = paddle.randn(shape, 'float64')
dim_1 = paddle.fluid.layers.fill_constant([1], "int64", 20)
dim_2 = paddle.fluid.layers.fill_constant([1], "int32", 50)
x3 = paddle.randn(shape=[dim_1, dim_2, 784])
var_shape = paddle.to_tensor(np.array(shape))
x4 = paddle.randn(var_shape)
for out in [x1, x2, x3, x4]:
self.assertAlmostEqual(np.mean(out.numpy()), .0, delta=0.1)
self.assertAlmostEqual(np.std(out.numpy()), 1., delta=0.1)
paddle.enable_static()
class TestRandnOpError(unittest.TestCase):
def test_error(self):
with program_guard(Program(), Program()):
# The argument shape's size of randn_op should not be 0.
self.assertRaises(AssertionError, paddle.randn, [])
# The argument shape's type of randn_op should be list or tuple.
self.assertRaises(TypeError, paddle.randn, 1)
# The argument dtype of randn_op should be float32 or float64.
self.assertRaises(TypeError, paddle.randn, [1, 2], 'int32')
if __name__ == "__main__":
unittest.main()