You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_real_imag_op.py

168 lines
5.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.static as static
from op_test import OpTest
numpy_apis = {
"real": np.real,
"imag": np.imag,
}
paddle_apis = {
"real": paddle.real,
"imag": paddle.imag,
}
class TestRealOp(OpTest):
def setUp(self):
# switch to static
paddle.enable_static()
# op test attrs
self.op_type = "real"
self.dtype = np.float64
self.init_input_output()
# backward attrs
self.init_grad_input_output()
def init_input_output(self):
self.inputs = {
'X': np.random.random(
(20, 5)).astype(self.dtype) + 1j * np.random.random(
(20, 5)).astype(self.dtype)
}
self.outputs = {'Out': numpy_apis[self.op_type](self.inputs['X'])}
def init_grad_input_output(self):
self.grad_out = np.ones((20, 5), self.dtype)
self.grad_x = np.real(self.grad_out) + 1j * np.zeros(
self.grad_out.shape)
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
class TestImagOp(TestRealOp):
def setUp(self):
# switch to static
paddle.enable_static()
# op test attrs
self.op_type = "imag"
self.dtype = np.float64
self.init_input_output()
# backward attrs
self.init_grad_input_output()
def init_grad_input_output(self):
self.grad_out = np.ones((20, 5), self.dtype)
self.grad_x = np.zeros(self.grad_out.shape) + 1j * np.real(
self.grad_out)
class TestRealAPI(unittest.TestCase):
def setUp(self):
# switch to static
paddle.enable_static()
# prepare test attrs
self.api = "real"
self.dtypes = ["complex64", "complex128"]
self.places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
self._shape = [2, 20, 2, 3]
def test_in_static_mode(self):
def init_input_output(dtype):
input = np.random.random(self._shape).astype(
dtype) + 1j * np.random.random(self._shape).astype(dtype)
return {'x': input}, numpy_apis[self.api](input)
for dtype in self.dtypes:
input_dict, np_res = init_input_output(dtype)
for place in self.places:
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=dtype)
out = paddle_apis[self.api](x)
exe = static.Executor(place)
out_value = exe.run(feed=input_dict, fetch_list=[out.name])
self.assertTrue(np.array_equal(np_res, out_value[0]))
def test_in_dynamic_mode(self):
for dtype in self.dtypes:
input = np.random.random(self._shape).astype(
dtype) + 1j * np.random.random(self._shape).astype(dtype)
np_res = numpy_apis[self.api](input)
for place in self.places:
# it is more convenient to use `guard` than `enable/disable_**` here
with fluid.dygraph.guard(place):
input_t = paddle.to_tensor(input)
res = paddle_apis[self.api](input_t).numpy()
self.assertTrue(np.array_equal(np_res, res))
res_t = input_t.real().numpy(
) if self.api is "real" else input_t.imag().numpy()
self.assertTrue(np.array_equal(np_res, res_t))
def test_name_argument(self):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=self.dtypes[0])
out = paddle_apis[self.api](x, name="real_res")
self.assertTrue("real_res" in out.name)
def test_dtype_error(self):
# in static mode
with self.assertRaises(TypeError):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype="float32")
out = paddle_apis[self.api](x, name="real_res")
# in dynamic mode
with self.assertRaises(RuntimeError):
with fluid.dygraph.guard():
input = np.random.random(self._shape).astype("float32")
input_t = paddle.to_tensor(input)
res = paddle_apis[self.api](input_t)
class TestImagAPI(TestRealAPI):
def setUp(self):
# switch to static
paddle.enable_static()
# prepare test attrs
self.api = "imag"
self.dtypes = ["complex64", "complex128"]
self.places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
self._shape = [2, 20, 2, 3]
if __name__ == "__main__":
unittest.main()