You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.0 KiB
188 lines
6.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import core
|
|
|
|
|
|
class TestReverseOp(OpTest):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 40)).astype('float64')
|
|
self.axis = [0]
|
|
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.op_type = "reverse"
|
|
self.inputs = {"X": self.x}
|
|
self.attrs = {'axis': self.axis}
|
|
out = self.x
|
|
for a in self.axis:
|
|
out = np.flip(out, axis=a)
|
|
self.outputs = {'Out': out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestCase0(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 40)).astype('float64')
|
|
self.axis = [1]
|
|
|
|
|
|
class TestCase0_neg(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 40)).astype('float64')
|
|
self.axis = [-1]
|
|
|
|
|
|
class TestCase1(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 40)).astype('float64')
|
|
self.axis = [0, 1]
|
|
|
|
|
|
class TestCase1_neg(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 40)).astype('float64')
|
|
self.axis = [0, -1]
|
|
|
|
|
|
class TestCase2(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 4, 10)).astype('float64')
|
|
self.axis = [0, 2]
|
|
|
|
|
|
class TestCase2_neg(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 4, 10)).astype('float64')
|
|
self.axis = [0, -2]
|
|
|
|
|
|
class TestCase3(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 4, 10)).astype('float64')
|
|
self.axis = [1, 2]
|
|
|
|
|
|
class TestCase3_neg(TestReverseOp):
|
|
def initTestCase(self):
|
|
self.x = np.random.random((3, 4, 10)).astype('float64')
|
|
self.axis = [-1, -2]
|
|
|
|
|
|
class TestCase4(unittest.TestCase):
|
|
def test_error(self):
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
train_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(train_program, startup_program):
|
|
label = fluid.layers.data(
|
|
name="label", shape=[1, 1, 1, 1, 1, 1, 1, 1], dtype="int64")
|
|
rev = fluid.layers.reverse(label, axis=[-1, -2])
|
|
|
|
def _run_program():
|
|
x = np.random.random(size=(10, 1, 1, 1, 1, 1, 1)).astype('int64')
|
|
exe.run(train_program, feed={"label": x})
|
|
|
|
self.assertRaises(IndexError, _run_program)
|
|
|
|
|
|
class TestReverseLoDTensorArray(unittest.TestCase):
|
|
def setUp(self):
|
|
self.shapes = [[5, 25], [5, 20], [5, 5]]
|
|
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
self.exe = fluid.Executor(self.place)
|
|
|
|
def run_program(self, arr_len, axis=0):
|
|
main_program = fluid.Program()
|
|
|
|
with fluid.program_guard(main_program):
|
|
inputs, inputs_data = [], []
|
|
for i in range(arr_len):
|
|
x = fluid.data("x%s" % i, self.shapes[i], dtype='float32')
|
|
x.stop_gradient = False
|
|
inputs.append(x)
|
|
inputs_data.append(
|
|
np.random.random(self.shapes[i]).astype('float32'))
|
|
|
|
tensor_array = fluid.layers.create_array(dtype='float32')
|
|
for i in range(arr_len):
|
|
idx = fluid.layers.array_length(tensor_array)
|
|
fluid.layers.array_write(inputs[i], idx, tensor_array)
|
|
|
|
reverse_array = fluid.layers.reverse(tensor_array, axis=axis)
|
|
output, _ = fluid.layers.tensor_array_to_tensor(reverse_array)
|
|
loss = fluid.layers.reduce_sum(output)
|
|
fluid.backward.append_backward(loss)
|
|
input_grads = list(
|
|
map(main_program.global_block().var,
|
|
[x.name + "@GRAD" for x in inputs]))
|
|
|
|
feed_dict = dict(zip([x.name for x in inputs], inputs_data))
|
|
res = self.exe.run(main_program,
|
|
feed=feed_dict,
|
|
fetch_list=input_grads + [output.name])
|
|
|
|
return np.hstack(inputs_data[::-1]), res
|
|
|
|
def test_case1(self):
|
|
gt, res = self.run_program(arr_len=3)
|
|
self.check_output(gt, res)
|
|
# test with tuple type of axis
|
|
gt, res = self.run_program(arr_len=3, axis=(0, ))
|
|
self.check_output(gt, res)
|
|
|
|
def test_case2(self):
|
|
gt, res = self.run_program(arr_len=1)
|
|
self.check_output(gt, res)
|
|
# test with list type of axis
|
|
gt, res = self.run_program(arr_len=1, axis=[0])
|
|
self.check_output(gt, res)
|
|
|
|
def check_output(self, gt, res):
|
|
arr_len = len(res) - 1
|
|
reversed_array = res[-1]
|
|
# check output
|
|
self.assertTrue(np.array_equal(gt, reversed_array))
|
|
# check grad
|
|
for i in range(arr_len):
|
|
self.assertTrue(np.array_equal(res[i], np.ones_like(res[i])))
|
|
|
|
def test_raise_error(self):
|
|
# The len(axis) should be 1 is input(X) is LoDTensorArray
|
|
with self.assertRaises(Exception):
|
|
self.run_program(arr_len=3, axis=[0, 1])
|
|
# The value of axis should be 0 is input(X) is LoDTensorArray
|
|
with self.assertRaises(Exception):
|
|
self.run_program(arr_len=3, axis=1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
unittest.main()
|