You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_reverse_op.py

188 lines
6.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
class TestReverseOp(OpTest):
def initTestCase(self):
self.x = np.random.random((3, 40)).astype('float64')
self.axis = [0]
def setUp(self):
self.initTestCase()
self.op_type = "reverse"
self.inputs = {"X": self.x}
self.attrs = {'axis': self.axis}
out = self.x
for a in self.axis:
out = np.flip(out, axis=a)
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestCase0(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 40)).astype('float64')
self.axis = [1]
class TestCase0_neg(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 40)).astype('float64')
self.axis = [-1]
class TestCase1(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 40)).astype('float64')
self.axis = [0, 1]
class TestCase1_neg(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 40)).astype('float64')
self.axis = [0, -1]
class TestCase2(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 4, 10)).astype('float64')
self.axis = [0, 2]
class TestCase2_neg(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 4, 10)).astype('float64')
self.axis = [0, -2]
class TestCase3(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 4, 10)).astype('float64')
self.axis = [1, 2]
class TestCase3_neg(TestReverseOp):
def initTestCase(self):
self.x = np.random.random((3, 4, 10)).astype('float64')
self.axis = [-1, -2]
class TestCase4(unittest.TestCase):
def test_error(self):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
label = fluid.layers.data(
name="label", shape=[1, 1, 1, 1, 1, 1, 1, 1], dtype="int64")
rev = fluid.layers.reverse(label, axis=[-1, -2])
def _run_program():
x = np.random.random(size=(10, 1, 1, 1, 1, 1, 1)).astype('int64')
exe.run(train_program, feed={"label": x})
self.assertRaises(IndexError, _run_program)
class TestReverseLoDTensorArray(unittest.TestCase):
def setUp(self):
self.shapes = [[5, 25], [5, 20], [5, 5]]
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
self.exe = fluid.Executor(self.place)
def run_program(self, arr_len, axis=0):
main_program = fluid.Program()
with fluid.program_guard(main_program):
inputs, inputs_data = [], []
for i in range(arr_len):
x = fluid.data("x%s" % i, self.shapes[i], dtype='float32')
x.stop_gradient = False
inputs.append(x)
inputs_data.append(
np.random.random(self.shapes[i]).astype('float32'))
tensor_array = fluid.layers.create_array(dtype='float32')
for i in range(arr_len):
idx = fluid.layers.array_length(tensor_array)
fluid.layers.array_write(inputs[i], idx, tensor_array)
reverse_array = fluid.layers.reverse(tensor_array, axis=axis)
output, _ = fluid.layers.tensor_array_to_tensor(reverse_array)
loss = fluid.layers.reduce_sum(output)
fluid.backward.append_backward(loss)
input_grads = list(
map(main_program.global_block().var,
[x.name + "@GRAD" for x in inputs]))
feed_dict = dict(zip([x.name for x in inputs], inputs_data))
res = self.exe.run(main_program,
feed=feed_dict,
fetch_list=input_grads + [output.name])
return np.hstack(inputs_data[::-1]), res
def test_case1(self):
gt, res = self.run_program(arr_len=3)
self.check_output(gt, res)
# test with tuple type of axis
gt, res = self.run_program(arr_len=3, axis=(0, ))
self.check_output(gt, res)
def test_case2(self):
gt, res = self.run_program(arr_len=1)
self.check_output(gt, res)
# test with list type of axis
gt, res = self.run_program(arr_len=1, axis=[0])
self.check_output(gt, res)
def check_output(self, gt, res):
arr_len = len(res) - 1
reversed_array = res[-1]
# check output
self.assertTrue(np.array_equal(gt, reversed_array))
# check grad
for i in range(arr_len):
self.assertTrue(np.array_equal(res[i], np.ones_like(res[i])))
def test_raise_error(self):
# The len(axis) should be 1 is input(X) is LoDTensorArray
with self.assertRaises(Exception):
self.run_program(arr_len=3, axis=[0, 1])
# The value of axis should be 0 is input(X) is LoDTensorArray
with self.assertRaises(Exception):
self.run_program(arr_len=3, axis=1)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()