You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_rnn_decode_api.py

717 lines
28 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import random
import unittest
import numpy as np
import paddle
import paddle.nn as nn
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.fluid.dygraph import Layer
from paddle.nn import BeamSearchDecoder, dynamic_decode
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid import framework
paddle.enable_static()
class EncoderCell(layers.RNNCell):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = [
layers.LSTMCell(hidden_size) for i in range(num_layers)
]
def call(self, step_input, states):
new_states = []
for i in range(self.num_layers):
out, new_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out, self.dropout_prob) if self.dropout_prob > 0 else out
new_states.append(new_state)
return step_input, new_states
@property
def state_shape(self):
return [cell.state_shape for cell in self.lstm_cells]
class DecoderCell(layers.RNNCell):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = [
layers.LSTMCell(hidden_size) for i in range(num_layers)
]
def attention(self, hidden, encoder_output, encoder_padding_mask):
query = layers.fc(hidden,
size=encoder_output.shape[-1],
bias_attr=False)
attn_scores = layers.matmul(
layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
if encoder_padding_mask is not None:
attn_scores = layers.elementwise_add(attn_scores,
encoder_padding_mask)
attn_scores = layers.softmax(attn_scores)
attn_out = layers.squeeze(
layers.matmul(attn_scores, encoder_output), [1])
attn_out = layers.concat([attn_out, hidden], 1)
attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
return attn_out
def call(self,
step_input,
states,
encoder_output,
encoder_padding_mask=None):
lstm_states, input_feed = states
new_lstm_states = []
step_input = layers.concat([step_input, input_feed], 1)
for i in range(self.num_layers):
out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
step_input = layers.dropout(
out, self.dropout_prob) if self.dropout_prob > 0 else out
new_lstm_states.append(new_lstm_state)
out = self.attention(step_input, encoder_output, encoder_padding_mask)
return out, [new_lstm_states, out]
class Encoder(object):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
def __call__(self, src_emb, src_sequence_length):
encoder_output, encoder_final_state = layers.rnn(
cell=self.encoder_cell,
inputs=src_emb,
sequence_length=src_sequence_length,
is_reverse=False)
return encoder_output, encoder_final_state
class Decoder(object):
def __init__(self,
num_layers,
hidden_size,
dropout_prob,
decoding_strategy="infer_sample",
max_decoding_length=20):
self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
self.decoding_strategy = decoding_strategy
self.max_decoding_length = None if (
self.decoding_strategy == "train_greedy") else max_decoding_length
def __call__(self, decoder_initial_states, encoder_output,
encoder_padding_mask, **kwargs):
output_layer = kwargs.pop("output_layer", None)
if self.decoding_strategy == "train_greedy":
# for teach-forcing MLE pre-training
helper = layers.TrainingHelper(**kwargs)
elif self.decoding_strategy == "infer_sample":
helper = layers.SampleEmbeddingHelper(**kwargs)
elif self.decoding_strategy == "infer_greedy":
helper = layers.GreedyEmbeddingHelper(**kwargs)
if self.decoding_strategy == "beam_search":
beam_size = kwargs.get("beam_size", 4)
encoder_output = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_output, beam_size)
encoder_padding_mask = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_padding_mask, beam_size)
decoder = layers.BeamSearchDecoder(
cell=self.decoder_cell, output_fn=output_layer, **kwargs)
else:
decoder = layers.BasicDecoder(
self.decoder_cell, helper, output_fn=output_layer)
(decoder_output, decoder_final_state,
dec_seq_lengths) = layers.dynamic_decode(
decoder,
inits=decoder_initial_states,
max_step_num=self.max_decoding_length,
encoder_output=encoder_output,
encoder_padding_mask=encoder_padding_mask,
impute_finished=False # for test coverage
if self.decoding_strategy == "beam_search" else True,
is_test=True if self.decoding_strategy == "beam_search" else False,
return_length=True)
return decoder_output, decoder_final_state, dec_seq_lengths
class Seq2SeqModel(object):
"""Seq2Seq model: RNN encoder-decoder with attention"""
def __init__(self,
num_layers,
hidden_size,
dropout_prob,
src_vocab_size,
trg_vocab_size,
start_token,
end_token,
decoding_strategy="infer_sample",
max_decoding_length=20,
beam_size=4):
self.start_token, self.end_token = start_token, end_token
self.max_decoding_length, self.beam_size = max_decoding_length, beam_size
self.src_embeder = paddle.nn.Embedding(
src_vocab_size,
hidden_size,
weight_attr=fluid.ParamAttr(name="source_embedding"))
self.trg_embeder = paddle.nn.Embedding(
trg_vocab_size,
hidden_size,
weight_attr=fluid.ParamAttr(name="target_embedding"))
self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
self.decoder = Decoder(num_layers, hidden_size, dropout_prob,
decoding_strategy, max_decoding_length)
self.output_layer = lambda x: layers.fc(
x,
size=trg_vocab_size,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(),
bias_attr=False)
def __call__(self, src, src_length, trg=None, trg_length=None):
# encoder
encoder_output, encoder_final_state = self.encoder(
self.src_embeder(src), src_length)
decoder_initial_states = [
encoder_final_state, self.decoder.decoder_cell.get_initial_states(
batch_ref=encoder_output, shape=[encoder_output.shape[-1]])
]
src_mask = layers.sequence_mask(
src_length, maxlen=layers.shape(src)[1], dtype="float32")
encoder_padding_mask = (src_mask - 1.0) * 1e9
encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
# decoder
decoder_kwargs = {
"inputs": self.trg_embeder(trg),
"sequence_length": trg_length,
} if self.decoder.decoding_strategy == "train_greedy" else ({
"embedding_fn": self.trg_embeder,
"beam_size": self.beam_size,
"start_token": self.start_token,
"end_token": self.end_token
} if self.decoder.decoding_strategy == "beam_search" else {
"embedding_fn": self.trg_embeder,
"start_tokens": layers.fill_constant_batch_size_like(
input=encoder_output,
shape=[-1],
dtype=src.dtype,
value=self.start_token),
"end_token": self.end_token
})
decoder_kwargs["output_layer"] = self.output_layer
(decoder_output, decoder_final_state,
dec_seq_lengths) = self.decoder(decoder_initial_states, encoder_output,
encoder_padding_mask, **decoder_kwargs)
if self.decoder.decoding_strategy == "beam_search": # for inference
return decoder_output
logits, samples, sample_length = (decoder_output.cell_outputs,
decoder_output.sample_ids,
dec_seq_lengths)
probs = layers.softmax(logits)
return probs, samples, sample_length
class PolicyGradient(object):
"""policy gradient"""
def __init__(self, lr=None):
self.lr = lr
def learn(self, act_prob, action, reward, length=None):
"""
update policy model self.model with policy gradient algorithm
"""
self.reward = fluid.layers.py_func(
func=reward_func, x=[action, length], out=reward)
neg_log_prob = layers.cross_entropy(act_prob, action)
cost = neg_log_prob * reward
cost = (layers.reduce_sum(cost) / layers.reduce_sum(length)
) if length is not None else layers.reduce_mean(cost)
optimizer = fluid.optimizer.Adam(self.lr)
optimizer.minimize(cost)
return cost
def reward_func(samples, sample_length):
"""toy reward"""
def discount_reward(reward, sequence_length, discount=1.):
return discount_reward_1d(reward, sequence_length, discount)
def discount_reward_1d(reward, sequence_length, discount=1., dtype=None):
if sequence_length is None:
raise ValueError(
'sequence_length must not be `None` for 1D reward.')
reward = np.array(reward)
sequence_length = np.array(sequence_length)
batch_size = reward.shape[0]
max_seq_length = np.max(sequence_length)
dtype = dtype or reward.dtype
if discount == 1.:
dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
else:
steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
mask = np.asarray(
steps < (sequence_length - 1)[:, None], dtype=dtype)
# Make each row = [discount, ..., discount, 1, ..., 1]
dmat = mask * discount + (1 - mask)
dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
disc_reward = dmat * reward[:, None]
disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
return disc_reward
def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
sequence = np.array(sequence)
sequence_length = np.array(sequence_length)
rank = sequence.ndim
if rank < 2:
raise ValueError("`sequence` must be 2D or higher order.")
batch_size = sequence.shape[0]
max_time = sequence.shape[1]
dtype = dtype or sequence.dtype
if time_major:
sequence = np.transpose(sequence, axes=[1, 0, 2])
steps = np.tile(np.arange(max_time), [batch_size, 1])
mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
for _ in range(2, rank):
mask = np.expand_dims(mask, -1)
sequence = sequence * mask
if time_major:
sequence = np.transpose(sequence, axes=[1, 0, 2])
return sequence
samples = np.array(samples)
sample_length = np.array(sample_length)
# length reward
reward = (5 - np.abs(sample_length - 5)).astype("float32")
# repeat punishment to trapped into local minima getting all same words
# beam search to get more than one sample may also can avoid this
for i in range(reward.shape[0]):
reward[i] += -10 if sample_length[i] > 1 and np.all(
samples[i][:sample_length[i] - 1] == samples[i][0]) else 0
return discount_reward(reward, sample_length, discount=1.).astype("float32")
class MLE(object):
"""teacher-forcing MLE training"""
def __init__(self, lr=None):
self.lr = lr
def learn(self, probs, label, weight=None, length=None):
loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
max_seq_len = layers.shape(probs)[1]
mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
loss = loss * mask
loss = layers.reduce_mean(loss, dim=[0])
loss = layers.reduce_sum(loss)
optimizer = fluid.optimizer.Adam(self.lr)
optimizer.minimize(loss)
return loss
class SeqPGAgent(object):
def __init__(self,
model_cls,
alg_cls=PolicyGradient,
model_hparams={},
alg_hparams={},
executor=None,
main_program=None,
startup_program=None,
seed=None):
self.main_program = fluid.Program(
) if main_program is None else main_program
self.startup_program = fluid.Program(
) if startup_program is None else startup_program
if seed is not None:
self.main_program.random_seed = seed
self.startup_program.random_seed = seed
self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
self.executor = executor
def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
with fluid.program_guard(self.main_program, self.startup_program):
source = fluid.data(name="src", shape=[None, None], dtype="int64")
source_length = fluid.data(
name="src_sequence_length", shape=[None], dtype="int64")
# only for teacher-forcing MLE training
target = fluid.data(name="trg", shape=[None, None], dtype="int64")
target_length = fluid.data(
name="trg_sequence_length", shape=[None], dtype="int64")
label = fluid.data(
name="label", shape=[None, None, 1], dtype="int64")
self.model = model_cls(**model_hparams)
self.alg = alg_cls(**alg_hparams)
self.probs, self.samples, self.sample_length = self.model(
source, source_length, target, target_length)
self.samples.stop_gradient = True
self.reward = fluid.data(
name="reward",
shape=[None, None], # batch_size, seq_len
dtype=self.probs.dtype)
self.samples.stop_gradient = False
self.cost = self.alg.learn(self.probs, self.samples, self.reward,
self.sample_length)
# to define the same parameters between different programs
self.pred_program = self.main_program._prune_with_input(
[source.name, source_length.name],
[self.probs, self.samples, self.sample_length])
def predict(self, feed_dict):
samples, sample_length = self.executor.run(
self.pred_program,
feed=feed_dict,
fetch_list=[self.samples, self.sample_length])
return samples, sample_length
def learn(self, feed_dict, fetch_list):
results = self.executor.run(self.main_program,
feed=feed_dict,
fetch_list=fetch_list)
return results
class TestDynamicDecode(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.model_hparams = {
"num_layers": 2,
"hidden_size": 32,
"dropout_prob": 0.1,
"src_vocab_size": 100,
"trg_vocab_size": 100,
"start_token": 0,
"end_token": 1,
"decoding_strategy": "infer_greedy",
"max_decoding_length": 10
}
self.iter_num = iter_num = 2
self.batch_size = batch_size = 4
src_seq_len = 10
trg_seq_len = 12
self.data = {
"src": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, src_seq_len)).astype("int64"),
"src_sequence_length": np.random.randint(
1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
"trg": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len)).astype("int64"),
"trg_sequence_length": np.random.randint(
1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
"label": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
}
place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
) else core.CPUPlace()
self.exe = Executor(place)
def test_mle_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "train_greedy"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
alg_cls=MLE,
model_hparams=self.model_hparams,
alg_hparams={"lr": 0.001},
executor=self.exe,
main_program=fluid.Program(),
startup_program=fluid.Program(),
seed=123)
self.exe.run(agent.startup_program)
for iter_idx in range(self.iter_num):
reward, cost = agent.learn(
{
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"][
iter_idx * self.batch_size:(iter_idx + 1
) * self.batch_size],
"trg": self.data["trg"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"trg_sequence_length": self.data["trg_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size],
"label": self.data["label"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size]
},
fetch_list=[agent.cost, agent.cost])
print("iter_idx: %d, reward: %f, cost: %f" %
(iter_idx, reward.mean(), cost))
def test_greedy_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "infer_greedy"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
alg_cls=PolicyGradient,
model_hparams=self.model_hparams,
alg_hparams={"lr": 0.001},
executor=self.exe,
main_program=fluid.Program(),
startup_program=fluid.Program(),
seed=123)
self.exe.run(agent.startup_program)
for iter_idx in range(self.iter_num):
reward, cost = agent.learn(
{
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size]
},
fetch_list=[agent.reward, agent.cost])
print("iter_idx: %d, reward: %f, cost: %f" %
(iter_idx, reward.mean(), cost))
def test_sample_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "infer_sample"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
alg_cls=PolicyGradient,
model_hparams=self.model_hparams,
alg_hparams={"lr": 0.001},
executor=self.exe,
main_program=fluid.Program(),
startup_program=fluid.Program(),
seed=123)
self.exe.run(agent.startup_program)
for iter_idx in range(self.iter_num):
reward, cost = agent.learn(
{
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size]
},
fetch_list=[agent.reward, agent.cost])
print("iter_idx: %d, reward: %f, cost: %f" %
(iter_idx, reward.mean(), cost))
def test_beam_search_infer(self):
paddle.set_default_dtype("float32")
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "beam_search"
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
source = fluid.data(name="src", shape=[None, None], dtype="int64")
source_length = fluid.data(
name="src_sequence_length", shape=[None], dtype="int64")
model = Seq2SeqModel(**self.model_hparams)
output = model(source, source_length)
self.exe.run(startup_program)
for iter_idx in range(self.iter_num):
trans_ids = self.exe.run(
program=main_program,
feed={
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size]
},
fetch_list=[output])[0]
def test_dynamic_basic_decoder(self):
paddle.disable_static()
src = paddle.to_tensor(np.random.randint(8, size=(8, 4)))
src_length = paddle.to_tensor(np.random.randint(8, size=(8)))
model = Seq2SeqModel(**self.model_hparams)
probs, samples, sample_length = model(src, src_length)
paddle.enable_static()
class ModuleApiTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._np_rand_state = np.random.get_state()
cls._py_rand_state = random.getstate()
cls._random_seed = 123
np.random.seed(cls._random_seed)
random.seed(cls._random_seed)
cls.model_cls = type(cls.__name__ + "Model", (Layer, ), {
"__init__": cls.model_init_wrapper(cls.model_init),
"forward": cls.model_forward
})
@classmethod
def tearDownClass(cls):
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
@staticmethod
def model_init_wrapper(func):
def __impl__(self, *args, **kwargs):
Layer.__init__(self)
func(self, *args, **kwargs)
return __impl__
@staticmethod
def model_init(model, *args, **kwargs):
raise NotImplementedError(
"model_init acts as `Model.__init__`, thus must implement it")
@staticmethod
def model_forward(model, *args, **kwargs):
return model.module(*args, **kwargs)
def make_inputs(self):
# TODO(guosheng): add default from `self.inputs`
raise NotImplementedError(
"model_inputs makes inputs for model, thus must implement it")
def setUp(self):
"""
For the model which wraps the module to be tested:
Set input data by `self.inputs` list
Set init argument values by `self.attrs` list/dict
Set model parameter values by `self.param_states` dict
Set expected output data by `self.outputs` list
We can create a model instance and run once with these.
"""
self.inputs = []
self.attrs = {}
self.param_states = {}
self.outputs = []
def _calc_output(self, place, mode="test", dygraph=True):
if dygraph:
fluid.enable_dygraph(place)
else:
fluid.disable_dygraph()
gen = paddle.seed(self._random_seed)
gen._is_init_py = False
paddle.framework.random._manual_program_seed(self._random_seed)
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
layer = self.model_cls(**self.attrs) if isinstance(
self.attrs, dict) else self.model_cls(*self.attrs)
model = Model(layer, inputs=self.make_inputs())
model.prepare()
if self.param_states:
model.load(self.param_states, optim_state=None)
return model.predict_batch(self.inputs)
def check_output_with_place(self, place, mode="test"):
dygraph_output = self._calc_output(place, mode, dygraph=True)
stgraph_output = self._calc_output(place, mode, dygraph=False)
expect_output = getattr(self, "outputs", None)
for actual_t, expect_t in zip(dygraph_output, stgraph_output):
self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
if expect_output:
for actual_t, expect_t in zip(dygraph_output, expect_output):
self.assertTrue(
np.allclose(
actual_t, expect_t, rtol=1e-5, atol=0))
def check_output(self):
devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
for device in devices:
place = set_device(device)
self.check_output_with_place(place)
class TestBeamSearch(ModuleApiTest):
def setUp(self):
paddle.set_default_dtype("float64")
shape = (8, 32)
self.inputs = [
np.random.random(shape).astype("float64"),
np.random.random(shape).astype("float64")
]
self.outputs = None
self.attrs = {
"vocab_size": 100,
"embed_dim": 32,
"hidden_size": 32,
}
self.param_states = {}
@staticmethod
def model_init(self,
vocab_size,
embed_dim,
hidden_size,
bos_id=0,
eos_id=1,
beam_size=4,
max_step_num=20):
embedder = paddle.fluid.dygraph.Embedding(
size=[vocab_size, embed_dim], dtype="float64")
output_layer = nn.Linear(hidden_size, vocab_size)
cell = nn.LSTMCell(embed_dim, hidden_size)
self.max_step_num = max_step_num
self.beam_search_decoder = BeamSearchDecoder(
cell,
start_token=bos_id,
end_token=eos_id,
beam_size=beam_size,
embedding_fn=embedder,
output_fn=output_layer)
@staticmethod
def model_forward(model, init_hidden, init_cell):
return dynamic_decode(
model.beam_search_decoder, [init_hidden, init_cell],
max_step_num=model.max_step_num,
impute_finished=True,
is_test=True)[0]
def make_inputs(self):
inputs = [
Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
]
return inputs
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()