You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
717 lines
28 KiB
717 lines
28 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import random
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddle import Model, set_device
|
|
from paddle.static import InputSpec as Input
|
|
from paddle.fluid.dygraph import Layer
|
|
from paddle.nn import BeamSearchDecoder, dynamic_decode
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid import framework
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
class EncoderCell(layers.RNNCell):
|
|
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
|
|
self.num_layers = num_layers
|
|
self.hidden_size = hidden_size
|
|
self.dropout_prob = dropout_prob
|
|
self.lstm_cells = [
|
|
layers.LSTMCell(hidden_size) for i in range(num_layers)
|
|
]
|
|
|
|
def call(self, step_input, states):
|
|
new_states = []
|
|
for i in range(self.num_layers):
|
|
out, new_state = self.lstm_cells[i](step_input, states[i])
|
|
step_input = layers.dropout(
|
|
out, self.dropout_prob) if self.dropout_prob > 0 else out
|
|
new_states.append(new_state)
|
|
return step_input, new_states
|
|
|
|
@property
|
|
def state_shape(self):
|
|
return [cell.state_shape for cell in self.lstm_cells]
|
|
|
|
|
|
class DecoderCell(layers.RNNCell):
|
|
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
|
|
self.num_layers = num_layers
|
|
self.hidden_size = hidden_size
|
|
self.dropout_prob = dropout_prob
|
|
self.lstm_cells = [
|
|
layers.LSTMCell(hidden_size) for i in range(num_layers)
|
|
]
|
|
|
|
def attention(self, hidden, encoder_output, encoder_padding_mask):
|
|
query = layers.fc(hidden,
|
|
size=encoder_output.shape[-1],
|
|
bias_attr=False)
|
|
attn_scores = layers.matmul(
|
|
layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
|
|
if encoder_padding_mask is not None:
|
|
attn_scores = layers.elementwise_add(attn_scores,
|
|
encoder_padding_mask)
|
|
attn_scores = layers.softmax(attn_scores)
|
|
attn_out = layers.squeeze(
|
|
layers.matmul(attn_scores, encoder_output), [1])
|
|
attn_out = layers.concat([attn_out, hidden], 1)
|
|
attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
|
|
return attn_out
|
|
|
|
def call(self,
|
|
step_input,
|
|
states,
|
|
encoder_output,
|
|
encoder_padding_mask=None):
|
|
lstm_states, input_feed = states
|
|
new_lstm_states = []
|
|
step_input = layers.concat([step_input, input_feed], 1)
|
|
for i in range(self.num_layers):
|
|
out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
|
|
step_input = layers.dropout(
|
|
out, self.dropout_prob) if self.dropout_prob > 0 else out
|
|
new_lstm_states.append(new_lstm_state)
|
|
out = self.attention(step_input, encoder_output, encoder_padding_mask)
|
|
return out, [new_lstm_states, out]
|
|
|
|
|
|
class Encoder(object):
|
|
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
|
|
self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
|
|
|
|
def __call__(self, src_emb, src_sequence_length):
|
|
encoder_output, encoder_final_state = layers.rnn(
|
|
cell=self.encoder_cell,
|
|
inputs=src_emb,
|
|
sequence_length=src_sequence_length,
|
|
is_reverse=False)
|
|
return encoder_output, encoder_final_state
|
|
|
|
|
|
class Decoder(object):
|
|
def __init__(self,
|
|
num_layers,
|
|
hidden_size,
|
|
dropout_prob,
|
|
decoding_strategy="infer_sample",
|
|
max_decoding_length=20):
|
|
self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
|
|
self.decoding_strategy = decoding_strategy
|
|
self.max_decoding_length = None if (
|
|
self.decoding_strategy == "train_greedy") else max_decoding_length
|
|
|
|
def __call__(self, decoder_initial_states, encoder_output,
|
|
encoder_padding_mask, **kwargs):
|
|
output_layer = kwargs.pop("output_layer", None)
|
|
if self.decoding_strategy == "train_greedy":
|
|
# for teach-forcing MLE pre-training
|
|
helper = layers.TrainingHelper(**kwargs)
|
|
elif self.decoding_strategy == "infer_sample":
|
|
helper = layers.SampleEmbeddingHelper(**kwargs)
|
|
elif self.decoding_strategy == "infer_greedy":
|
|
helper = layers.GreedyEmbeddingHelper(**kwargs)
|
|
|
|
if self.decoding_strategy == "beam_search":
|
|
beam_size = kwargs.get("beam_size", 4)
|
|
encoder_output = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
|
|
encoder_output, beam_size)
|
|
encoder_padding_mask = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
|
|
encoder_padding_mask, beam_size)
|
|
decoder = layers.BeamSearchDecoder(
|
|
cell=self.decoder_cell, output_fn=output_layer, **kwargs)
|
|
else:
|
|
decoder = layers.BasicDecoder(
|
|
self.decoder_cell, helper, output_fn=output_layer)
|
|
|
|
(decoder_output, decoder_final_state,
|
|
dec_seq_lengths) = layers.dynamic_decode(
|
|
decoder,
|
|
inits=decoder_initial_states,
|
|
max_step_num=self.max_decoding_length,
|
|
encoder_output=encoder_output,
|
|
encoder_padding_mask=encoder_padding_mask,
|
|
impute_finished=False # for test coverage
|
|
if self.decoding_strategy == "beam_search" else True,
|
|
is_test=True if self.decoding_strategy == "beam_search" else False,
|
|
return_length=True)
|
|
return decoder_output, decoder_final_state, dec_seq_lengths
|
|
|
|
|
|
class Seq2SeqModel(object):
|
|
"""Seq2Seq model: RNN encoder-decoder with attention"""
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
hidden_size,
|
|
dropout_prob,
|
|
src_vocab_size,
|
|
trg_vocab_size,
|
|
start_token,
|
|
end_token,
|
|
decoding_strategy="infer_sample",
|
|
max_decoding_length=20,
|
|
beam_size=4):
|
|
self.start_token, self.end_token = start_token, end_token
|
|
self.max_decoding_length, self.beam_size = max_decoding_length, beam_size
|
|
self.src_embeder = paddle.nn.Embedding(
|
|
src_vocab_size,
|
|
hidden_size,
|
|
weight_attr=fluid.ParamAttr(name="source_embedding"))
|
|
self.trg_embeder = paddle.nn.Embedding(
|
|
trg_vocab_size,
|
|
hidden_size,
|
|
weight_attr=fluid.ParamAttr(name="target_embedding"))
|
|
self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
|
|
self.decoder = Decoder(num_layers, hidden_size, dropout_prob,
|
|
decoding_strategy, max_decoding_length)
|
|
self.output_layer = lambda x: layers.fc(
|
|
x,
|
|
size=trg_vocab_size,
|
|
num_flatten_dims=len(x.shape) - 1,
|
|
param_attr=fluid.ParamAttr(),
|
|
bias_attr=False)
|
|
|
|
def __call__(self, src, src_length, trg=None, trg_length=None):
|
|
# encoder
|
|
encoder_output, encoder_final_state = self.encoder(
|
|
self.src_embeder(src), src_length)
|
|
|
|
decoder_initial_states = [
|
|
encoder_final_state, self.decoder.decoder_cell.get_initial_states(
|
|
batch_ref=encoder_output, shape=[encoder_output.shape[-1]])
|
|
]
|
|
src_mask = layers.sequence_mask(
|
|
src_length, maxlen=layers.shape(src)[1], dtype="float32")
|
|
encoder_padding_mask = (src_mask - 1.0) * 1e9
|
|
encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
|
|
|
|
# decoder
|
|
decoder_kwargs = {
|
|
"inputs": self.trg_embeder(trg),
|
|
"sequence_length": trg_length,
|
|
} if self.decoder.decoding_strategy == "train_greedy" else ({
|
|
"embedding_fn": self.trg_embeder,
|
|
"beam_size": self.beam_size,
|
|
"start_token": self.start_token,
|
|
"end_token": self.end_token
|
|
} if self.decoder.decoding_strategy == "beam_search" else {
|
|
"embedding_fn": self.trg_embeder,
|
|
"start_tokens": layers.fill_constant_batch_size_like(
|
|
input=encoder_output,
|
|
shape=[-1],
|
|
dtype=src.dtype,
|
|
value=self.start_token),
|
|
"end_token": self.end_token
|
|
})
|
|
decoder_kwargs["output_layer"] = self.output_layer
|
|
|
|
(decoder_output, decoder_final_state,
|
|
dec_seq_lengths) = self.decoder(decoder_initial_states, encoder_output,
|
|
encoder_padding_mask, **decoder_kwargs)
|
|
if self.decoder.decoding_strategy == "beam_search": # for inference
|
|
return decoder_output
|
|
logits, samples, sample_length = (decoder_output.cell_outputs,
|
|
decoder_output.sample_ids,
|
|
dec_seq_lengths)
|
|
probs = layers.softmax(logits)
|
|
return probs, samples, sample_length
|
|
|
|
|
|
class PolicyGradient(object):
|
|
"""policy gradient"""
|
|
|
|
def __init__(self, lr=None):
|
|
self.lr = lr
|
|
|
|
def learn(self, act_prob, action, reward, length=None):
|
|
"""
|
|
update policy model self.model with policy gradient algorithm
|
|
"""
|
|
self.reward = fluid.layers.py_func(
|
|
func=reward_func, x=[action, length], out=reward)
|
|
neg_log_prob = layers.cross_entropy(act_prob, action)
|
|
cost = neg_log_prob * reward
|
|
cost = (layers.reduce_sum(cost) / layers.reduce_sum(length)
|
|
) if length is not None else layers.reduce_mean(cost)
|
|
optimizer = fluid.optimizer.Adam(self.lr)
|
|
optimizer.minimize(cost)
|
|
return cost
|
|
|
|
|
|
def reward_func(samples, sample_length):
|
|
"""toy reward"""
|
|
|
|
def discount_reward(reward, sequence_length, discount=1.):
|
|
return discount_reward_1d(reward, sequence_length, discount)
|
|
|
|
def discount_reward_1d(reward, sequence_length, discount=1., dtype=None):
|
|
if sequence_length is None:
|
|
raise ValueError(
|
|
'sequence_length must not be `None` for 1D reward.')
|
|
reward = np.array(reward)
|
|
sequence_length = np.array(sequence_length)
|
|
batch_size = reward.shape[0]
|
|
max_seq_length = np.max(sequence_length)
|
|
dtype = dtype or reward.dtype
|
|
if discount == 1.:
|
|
dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
|
|
else:
|
|
steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
|
|
mask = np.asarray(
|
|
steps < (sequence_length - 1)[:, None], dtype=dtype)
|
|
# Make each row = [discount, ..., discount, 1, ..., 1]
|
|
dmat = mask * discount + (1 - mask)
|
|
dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
|
|
disc_reward = dmat * reward[:, None]
|
|
disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
|
|
return disc_reward
|
|
|
|
def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
|
|
sequence = np.array(sequence)
|
|
sequence_length = np.array(sequence_length)
|
|
rank = sequence.ndim
|
|
if rank < 2:
|
|
raise ValueError("`sequence` must be 2D or higher order.")
|
|
batch_size = sequence.shape[0]
|
|
max_time = sequence.shape[1]
|
|
dtype = dtype or sequence.dtype
|
|
if time_major:
|
|
sequence = np.transpose(sequence, axes=[1, 0, 2])
|
|
steps = np.tile(np.arange(max_time), [batch_size, 1])
|
|
mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
|
|
for _ in range(2, rank):
|
|
mask = np.expand_dims(mask, -1)
|
|
sequence = sequence * mask
|
|
if time_major:
|
|
sequence = np.transpose(sequence, axes=[1, 0, 2])
|
|
return sequence
|
|
|
|
samples = np.array(samples)
|
|
sample_length = np.array(sample_length)
|
|
# length reward
|
|
reward = (5 - np.abs(sample_length - 5)).astype("float32")
|
|
# repeat punishment to trapped into local minima getting all same words
|
|
# beam search to get more than one sample may also can avoid this
|
|
for i in range(reward.shape[0]):
|
|
reward[i] += -10 if sample_length[i] > 1 and np.all(
|
|
samples[i][:sample_length[i] - 1] == samples[i][0]) else 0
|
|
return discount_reward(reward, sample_length, discount=1.).astype("float32")
|
|
|
|
|
|
class MLE(object):
|
|
"""teacher-forcing MLE training"""
|
|
|
|
def __init__(self, lr=None):
|
|
self.lr = lr
|
|
|
|
def learn(self, probs, label, weight=None, length=None):
|
|
loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
|
|
max_seq_len = layers.shape(probs)[1]
|
|
mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
|
|
loss = loss * mask
|
|
loss = layers.reduce_mean(loss, dim=[0])
|
|
loss = layers.reduce_sum(loss)
|
|
optimizer = fluid.optimizer.Adam(self.lr)
|
|
optimizer.minimize(loss)
|
|
return loss
|
|
|
|
|
|
class SeqPGAgent(object):
|
|
def __init__(self,
|
|
model_cls,
|
|
alg_cls=PolicyGradient,
|
|
model_hparams={},
|
|
alg_hparams={},
|
|
executor=None,
|
|
main_program=None,
|
|
startup_program=None,
|
|
seed=None):
|
|
self.main_program = fluid.Program(
|
|
) if main_program is None else main_program
|
|
self.startup_program = fluid.Program(
|
|
) if startup_program is None else startup_program
|
|
if seed is not None:
|
|
self.main_program.random_seed = seed
|
|
self.startup_program.random_seed = seed
|
|
self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
|
|
self.executor = executor
|
|
|
|
def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
|
|
with fluid.program_guard(self.main_program, self.startup_program):
|
|
source = fluid.data(name="src", shape=[None, None], dtype="int64")
|
|
source_length = fluid.data(
|
|
name="src_sequence_length", shape=[None], dtype="int64")
|
|
# only for teacher-forcing MLE training
|
|
target = fluid.data(name="trg", shape=[None, None], dtype="int64")
|
|
target_length = fluid.data(
|
|
name="trg_sequence_length", shape=[None], dtype="int64")
|
|
label = fluid.data(
|
|
name="label", shape=[None, None, 1], dtype="int64")
|
|
self.model = model_cls(**model_hparams)
|
|
self.alg = alg_cls(**alg_hparams)
|
|
self.probs, self.samples, self.sample_length = self.model(
|
|
source, source_length, target, target_length)
|
|
self.samples.stop_gradient = True
|
|
self.reward = fluid.data(
|
|
name="reward",
|
|
shape=[None, None], # batch_size, seq_len
|
|
dtype=self.probs.dtype)
|
|
self.samples.stop_gradient = False
|
|
self.cost = self.alg.learn(self.probs, self.samples, self.reward,
|
|
self.sample_length)
|
|
|
|
# to define the same parameters between different programs
|
|
self.pred_program = self.main_program._prune_with_input(
|
|
[source.name, source_length.name],
|
|
[self.probs, self.samples, self.sample_length])
|
|
|
|
def predict(self, feed_dict):
|
|
samples, sample_length = self.executor.run(
|
|
self.pred_program,
|
|
feed=feed_dict,
|
|
fetch_list=[self.samples, self.sample_length])
|
|
return samples, sample_length
|
|
|
|
def learn(self, feed_dict, fetch_list):
|
|
results = self.executor.run(self.main_program,
|
|
feed=feed_dict,
|
|
fetch_list=fetch_list)
|
|
return results
|
|
|
|
|
|
class TestDynamicDecode(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(123)
|
|
self.model_hparams = {
|
|
"num_layers": 2,
|
|
"hidden_size": 32,
|
|
"dropout_prob": 0.1,
|
|
"src_vocab_size": 100,
|
|
"trg_vocab_size": 100,
|
|
"start_token": 0,
|
|
"end_token": 1,
|
|
"decoding_strategy": "infer_greedy",
|
|
"max_decoding_length": 10
|
|
}
|
|
|
|
self.iter_num = iter_num = 2
|
|
self.batch_size = batch_size = 4
|
|
src_seq_len = 10
|
|
trg_seq_len = 12
|
|
self.data = {
|
|
"src": np.random.randint(
|
|
2, self.model_hparams["src_vocab_size"],
|
|
(iter_num * batch_size, src_seq_len)).astype("int64"),
|
|
"src_sequence_length": np.random.randint(
|
|
1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
|
|
"trg": np.random.randint(
|
|
2, self.model_hparams["src_vocab_size"],
|
|
(iter_num * batch_size, trg_seq_len)).astype("int64"),
|
|
"trg_sequence_length": np.random.randint(
|
|
1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
|
|
"label": np.random.randint(
|
|
2, self.model_hparams["src_vocab_size"],
|
|
(iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
|
|
}
|
|
|
|
place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else core.CPUPlace()
|
|
self.exe = Executor(place)
|
|
|
|
def test_mle_train(self):
|
|
paddle.enable_static()
|
|
self.model_hparams["decoding_strategy"] = "train_greedy"
|
|
agent = SeqPGAgent(
|
|
model_cls=Seq2SeqModel,
|
|
alg_cls=MLE,
|
|
model_hparams=self.model_hparams,
|
|
alg_hparams={"lr": 0.001},
|
|
executor=self.exe,
|
|
main_program=fluid.Program(),
|
|
startup_program=fluid.Program(),
|
|
seed=123)
|
|
self.exe.run(agent.startup_program)
|
|
for iter_idx in range(self.iter_num):
|
|
reward, cost = agent.learn(
|
|
{
|
|
"src": self.data["src"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size, :],
|
|
"src_sequence_length": self.data["src_sequence_length"][
|
|
iter_idx * self.batch_size:(iter_idx + 1
|
|
) * self.batch_size],
|
|
"trg": self.data["trg"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size, :],
|
|
"trg_sequence_length": self.data["trg_sequence_length"]
|
|
[iter_idx * self.batch_size:(iter_idx + 1) *
|
|
self.batch_size],
|
|
"label": self.data["label"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size]
|
|
},
|
|
fetch_list=[agent.cost, agent.cost])
|
|
print("iter_idx: %d, reward: %f, cost: %f" %
|
|
(iter_idx, reward.mean(), cost))
|
|
|
|
def test_greedy_train(self):
|
|
paddle.enable_static()
|
|
self.model_hparams["decoding_strategy"] = "infer_greedy"
|
|
agent = SeqPGAgent(
|
|
model_cls=Seq2SeqModel,
|
|
alg_cls=PolicyGradient,
|
|
model_hparams=self.model_hparams,
|
|
alg_hparams={"lr": 0.001},
|
|
executor=self.exe,
|
|
main_program=fluid.Program(),
|
|
startup_program=fluid.Program(),
|
|
seed=123)
|
|
self.exe.run(agent.startup_program)
|
|
for iter_idx in range(self.iter_num):
|
|
reward, cost = agent.learn(
|
|
{
|
|
"src": self.data["src"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size, :],
|
|
"src_sequence_length": self.data["src_sequence_length"]
|
|
[iter_idx * self.batch_size:(iter_idx + 1) *
|
|
self.batch_size]
|
|
},
|
|
fetch_list=[agent.reward, agent.cost])
|
|
print("iter_idx: %d, reward: %f, cost: %f" %
|
|
(iter_idx, reward.mean(), cost))
|
|
|
|
def test_sample_train(self):
|
|
paddle.enable_static()
|
|
self.model_hparams["decoding_strategy"] = "infer_sample"
|
|
agent = SeqPGAgent(
|
|
model_cls=Seq2SeqModel,
|
|
alg_cls=PolicyGradient,
|
|
model_hparams=self.model_hparams,
|
|
alg_hparams={"lr": 0.001},
|
|
executor=self.exe,
|
|
main_program=fluid.Program(),
|
|
startup_program=fluid.Program(),
|
|
seed=123)
|
|
self.exe.run(agent.startup_program)
|
|
for iter_idx in range(self.iter_num):
|
|
reward, cost = agent.learn(
|
|
{
|
|
"src": self.data["src"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size, :],
|
|
"src_sequence_length": self.data["src_sequence_length"]
|
|
[iter_idx * self.batch_size:(iter_idx + 1) *
|
|
self.batch_size]
|
|
},
|
|
fetch_list=[agent.reward, agent.cost])
|
|
print("iter_idx: %d, reward: %f, cost: %f" %
|
|
(iter_idx, reward.mean(), cost))
|
|
|
|
def test_beam_search_infer(self):
|
|
paddle.set_default_dtype("float32")
|
|
paddle.enable_static()
|
|
self.model_hparams["decoding_strategy"] = "beam_search"
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
source = fluid.data(name="src", shape=[None, None], dtype="int64")
|
|
source_length = fluid.data(
|
|
name="src_sequence_length", shape=[None], dtype="int64")
|
|
model = Seq2SeqModel(**self.model_hparams)
|
|
output = model(source, source_length)
|
|
|
|
self.exe.run(startup_program)
|
|
for iter_idx in range(self.iter_num):
|
|
trans_ids = self.exe.run(
|
|
program=main_program,
|
|
feed={
|
|
"src": self.data["src"][iter_idx * self.batch_size:(
|
|
iter_idx + 1) * self.batch_size, :],
|
|
"src_sequence_length": self.data["src_sequence_length"]
|
|
[iter_idx * self.batch_size:(iter_idx + 1) *
|
|
self.batch_size]
|
|
},
|
|
fetch_list=[output])[0]
|
|
|
|
def test_dynamic_basic_decoder(self):
|
|
paddle.disable_static()
|
|
src = paddle.to_tensor(np.random.randint(8, size=(8, 4)))
|
|
src_length = paddle.to_tensor(np.random.randint(8, size=(8)))
|
|
model = Seq2SeqModel(**self.model_hparams)
|
|
probs, samples, sample_length = model(src, src_length)
|
|
paddle.enable_static()
|
|
|
|
|
|
class ModuleApiTest(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._np_rand_state = np.random.get_state()
|
|
cls._py_rand_state = random.getstate()
|
|
cls._random_seed = 123
|
|
np.random.seed(cls._random_seed)
|
|
random.seed(cls._random_seed)
|
|
|
|
cls.model_cls = type(cls.__name__ + "Model", (Layer, ), {
|
|
"__init__": cls.model_init_wrapper(cls.model_init),
|
|
"forward": cls.model_forward
|
|
})
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
np.random.set_state(cls._np_rand_state)
|
|
random.setstate(cls._py_rand_state)
|
|
|
|
@staticmethod
|
|
def model_init_wrapper(func):
|
|
def __impl__(self, *args, **kwargs):
|
|
Layer.__init__(self)
|
|
func(self, *args, **kwargs)
|
|
|
|
return __impl__
|
|
|
|
@staticmethod
|
|
def model_init(model, *args, **kwargs):
|
|
raise NotImplementedError(
|
|
"model_init acts as `Model.__init__`, thus must implement it")
|
|
|
|
@staticmethod
|
|
def model_forward(model, *args, **kwargs):
|
|
return model.module(*args, **kwargs)
|
|
|
|
def make_inputs(self):
|
|
# TODO(guosheng): add default from `self.inputs`
|
|
raise NotImplementedError(
|
|
"model_inputs makes inputs for model, thus must implement it")
|
|
|
|
def setUp(self):
|
|
"""
|
|
For the model which wraps the module to be tested:
|
|
Set input data by `self.inputs` list
|
|
Set init argument values by `self.attrs` list/dict
|
|
Set model parameter values by `self.param_states` dict
|
|
Set expected output data by `self.outputs` list
|
|
We can create a model instance and run once with these.
|
|
"""
|
|
self.inputs = []
|
|
self.attrs = {}
|
|
self.param_states = {}
|
|
self.outputs = []
|
|
|
|
def _calc_output(self, place, mode="test", dygraph=True):
|
|
if dygraph:
|
|
fluid.enable_dygraph(place)
|
|
else:
|
|
fluid.disable_dygraph()
|
|
gen = paddle.seed(self._random_seed)
|
|
gen._is_init_py = False
|
|
paddle.framework.random._manual_program_seed(self._random_seed)
|
|
scope = fluid.core.Scope()
|
|
with fluid.scope_guard(scope):
|
|
layer = self.model_cls(**self.attrs) if isinstance(
|
|
self.attrs, dict) else self.model_cls(*self.attrs)
|
|
model = Model(layer, inputs=self.make_inputs())
|
|
model.prepare()
|
|
if self.param_states:
|
|
model.load(self.param_states, optim_state=None)
|
|
return model.predict_batch(self.inputs)
|
|
|
|
def check_output_with_place(self, place, mode="test"):
|
|
dygraph_output = self._calc_output(place, mode, dygraph=True)
|
|
stgraph_output = self._calc_output(place, mode, dygraph=False)
|
|
expect_output = getattr(self, "outputs", None)
|
|
for actual_t, expect_t in zip(dygraph_output, stgraph_output):
|
|
self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
|
|
if expect_output:
|
|
for actual_t, expect_t in zip(dygraph_output, expect_output):
|
|
self.assertTrue(
|
|
np.allclose(
|
|
actual_t, expect_t, rtol=1e-5, atol=0))
|
|
|
|
def check_output(self):
|
|
devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
|
|
for device in devices:
|
|
place = set_device(device)
|
|
self.check_output_with_place(place)
|
|
|
|
|
|
class TestBeamSearch(ModuleApiTest):
|
|
def setUp(self):
|
|
paddle.set_default_dtype("float64")
|
|
shape = (8, 32)
|
|
self.inputs = [
|
|
np.random.random(shape).astype("float64"),
|
|
np.random.random(shape).astype("float64")
|
|
]
|
|
self.outputs = None
|
|
self.attrs = {
|
|
"vocab_size": 100,
|
|
"embed_dim": 32,
|
|
"hidden_size": 32,
|
|
}
|
|
self.param_states = {}
|
|
|
|
@staticmethod
|
|
def model_init(self,
|
|
vocab_size,
|
|
embed_dim,
|
|
hidden_size,
|
|
bos_id=0,
|
|
eos_id=1,
|
|
beam_size=4,
|
|
max_step_num=20):
|
|
embedder = paddle.fluid.dygraph.Embedding(
|
|
size=[vocab_size, embed_dim], dtype="float64")
|
|
output_layer = nn.Linear(hidden_size, vocab_size)
|
|
cell = nn.LSTMCell(embed_dim, hidden_size)
|
|
self.max_step_num = max_step_num
|
|
self.beam_search_decoder = BeamSearchDecoder(
|
|
cell,
|
|
start_token=bos_id,
|
|
end_token=eos_id,
|
|
beam_size=beam_size,
|
|
embedding_fn=embedder,
|
|
output_fn=output_layer)
|
|
|
|
@staticmethod
|
|
def model_forward(model, init_hidden, init_cell):
|
|
return dynamic_decode(
|
|
model.beam_search_decoder, [init_hidden, init_cell],
|
|
max_step_num=model.max_step_num,
|
|
impute_finished=True,
|
|
is_test=True)[0]
|
|
|
|
def make_inputs(self):
|
|
inputs = [
|
|
Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
|
|
Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
|
|
]
|
|
return inputs
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|