You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
6.1 KiB
203 lines
6.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import sys
|
|
from op_test import OpTest
|
|
|
|
|
|
def compute_segment_sum(x, segment_ids):
|
|
length = segment_ids[-1] + 1
|
|
target_shape = list(x.shape)
|
|
target_shape[0] = length
|
|
results = np.zeros(target_shape, dtype=x.dtype)
|
|
for index, ids in enumerate(segment_ids):
|
|
results[ids, :] += x[index, :]
|
|
return results
|
|
|
|
|
|
def compute_segment_mean(x, segment_ids):
|
|
length = segment_ids[-1] + 1
|
|
target_shape = list(x.shape)
|
|
target_shape[0] = length
|
|
results = np.zeros(target_shape, dtype=x.dtype)
|
|
count = np.zeros(length, dtype=x.dtype) + 1e-8
|
|
for index, ids in enumerate(segment_ids):
|
|
results[ids, :] += x[index, :]
|
|
count[ids] += 1
|
|
results = results / count.reshape([-1, 1])
|
|
return results
|
|
|
|
|
|
def compute_segment_min_max(x, segment_ids, pooltype="MAX"):
|
|
length = segment_ids[-1] + 1
|
|
target_shape = list(x.shape)
|
|
target_shape[0] = length
|
|
gradient = np.zeros_like(x)
|
|
results = np.zeros(target_shape, dtype=x.dtype)
|
|
last_idx = 0
|
|
current_id = segment_ids[0]
|
|
for idx in range(1, len(segment_ids) + 1):
|
|
if idx < len(segment_ids):
|
|
if segment_ids[idx] == current_id:
|
|
continue
|
|
sub_x = x[last_idx:idx, :]
|
|
if pooltype == "MAX":
|
|
results[current_id] = np.amax(sub_x, axis=0)
|
|
elif pooltype == "MIN":
|
|
results[current_id] = np.amin(sub_x, axis=0)
|
|
else:
|
|
raise ValueError("Invalid pooltype, only MAX, MIN supported!")
|
|
gradient[last_idx:idx, :][sub_x == results[current_id]] = 1
|
|
last_idx = idx
|
|
if idx < len(segment_ids):
|
|
current_id = segment_ids[idx]
|
|
|
|
return results, gradient / results.size
|
|
|
|
|
|
class TestSegmentOps(OpTest):
|
|
def set_data(self):
|
|
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
|
|
segment_ids = self.set_segment(len(x), len(x) // 5 + 1)
|
|
return x, segment_ids
|
|
|
|
def set_segment(self, origin_len, reduce_len):
|
|
segment = np.zeros(reduce_len, dtype='int64')
|
|
segment = np.random.randint(0, reduce_len, size=[origin_len])
|
|
segment = np.sort(segment)
|
|
return segment.astype('int64')
|
|
|
|
def compute(self, x, segment_ids):
|
|
return compute_segment_sum(x, segment_ids)
|
|
|
|
def prepare(self):
|
|
self.op_type = "segment_pool"
|
|
self.dtype = np.float64
|
|
self.shape = [30, 15]
|
|
self.attrs = {"pooltype": "SUM"}
|
|
|
|
def setUp(self):
|
|
self.prepare()
|
|
x, segment_ids = self.set_data()
|
|
result = self.compute(x, segment_ids)
|
|
self.inputs = {
|
|
'X': x.astype(self.dtype),
|
|
'SegmentIds': segment_ids.astype(np.int64)
|
|
}
|
|
self.outputs = {'Out': result.astype(self.dtype)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestSegmentSum2(TestSegmentOps):
|
|
def prepare(self):
|
|
super(TestSegmentSum2, self).prepare()
|
|
self.shape = [40, 20]
|
|
self.dtype = np.float32
|
|
|
|
def setUp(self):
|
|
self.prepare()
|
|
x, segment_ids = self.set_data()
|
|
result = self.compute(x, segment_ids)
|
|
self.inputs = {
|
|
'X': x.astype(self.dtype),
|
|
'SegmentIds': segment_ids.astype(np.int32)
|
|
}
|
|
self.outputs = {'Out': result.astype(self.dtype)}
|
|
|
|
|
|
class TestSegmentMax(TestSegmentOps):
|
|
def compute(self, x, segment_ids):
|
|
return compute_segment_min_max(x, segment_ids, pooltype="MAX")
|
|
|
|
def prepare(self):
|
|
super(TestSegmentMax, self).prepare()
|
|
self.shape = [40, 20]
|
|
self.attrs = {'pooltype': "MAX"}
|
|
|
|
def setUp(self):
|
|
self.prepare()
|
|
x, segment_ids = self.set_data()
|
|
result, self.gradient = self.compute(x, segment_ids)
|
|
self.inputs = {
|
|
'X': x.astype(self.dtype),
|
|
'SegmentIds': segment_ids.astype(np.int32)
|
|
}
|
|
self.outputs = {'Out': result.astype(self.dtype)}
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out", user_defined_grads=[self.gradient])
|
|
|
|
|
|
class TestSegmentMax2(TestSegmentMax):
|
|
def prepare(self):
|
|
super(TestSegmentMax2, self).prepare()
|
|
self.dtype = np.float32
|
|
|
|
|
|
class TestSegmentMin(TestSegmentMax):
|
|
def compute(self, x, segment_ids):
|
|
return compute_segment_min_max(x, segment_ids, pooltype="MIN")
|
|
|
|
def prepare(self):
|
|
super(TestSegmentMin, self).prepare()
|
|
self.attrs = {'pooltype': "MIN"}
|
|
|
|
|
|
class TestSegmentMin2(TestSegmentMin):
|
|
def prepare(self):
|
|
super(TestSegmentMin2, self).prepare()
|
|
self.dtype = np.float32
|
|
|
|
|
|
class TestSegmentMean(TestSegmentOps):
|
|
def compute(self, x, segment_ids):
|
|
return compute_segment_mean(x, segment_ids)
|
|
|
|
def prepare(self):
|
|
super(TestSegmentMean, self).prepare()
|
|
self.shape = [40, 20]
|
|
self.attrs = {'pooltype': "MEAN"}
|
|
|
|
def setUp(self):
|
|
self.prepare()
|
|
x, segment_ids = self.set_data()
|
|
result = self.compute(x, segment_ids)
|
|
self.inputs = {'X': x, 'SegmentIds': segment_ids}
|
|
self.outputs = {
|
|
'Out': result,
|
|
'SummedIds': compute_segment_sum(
|
|
np.ones([len(x), 1]).astype(self.dtype), segment_ids)
|
|
}
|
|
|
|
|
|
class TestSegmentMean2(TestSegmentMean):
|
|
def prepare(self):
|
|
super(TestSegmentMean2, self).prepare()
|
|
self.dtype = np.float32
|
|
self.shape = [30, 20]
|
|
self.attrs = {'pooltype': "MEAN"}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|