You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.9 KiB
166 lines
5.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
import unittest
|
|
from op_test import OpTest
|
|
from test_sigmoid_focal_loss_op import sigmoid_focal_loss_forward
|
|
|
|
|
|
def call_sfl_functional(logit,
|
|
label,
|
|
normalizer,
|
|
alpha=0.25,
|
|
gamma=2.0,
|
|
reduction='sum'):
|
|
res = paddle.nn.functional.sigmoid_focal_loss(
|
|
logit, label, normalizer, alpha=alpha, gamma=gamma, reduction=reduction)
|
|
return res
|
|
|
|
|
|
def test_static(place,
|
|
logit_np,
|
|
label_np,
|
|
normalizer_np,
|
|
alpha=0.25,
|
|
gamma=2.0,
|
|
reduction='sum'):
|
|
paddle.enable_static()
|
|
prog = paddle.static.Program()
|
|
startup_prog = paddle.static.Program()
|
|
with paddle.static.program_guard(prog, startup_prog):
|
|
logit = paddle.fluid.data(name='logit', shape=logit_np.shape, dtype='float64')
|
|
label = paddle.fluid.data(name='label', shape=label_np.shape, dtype='float64')
|
|
feed_dict = {"logit": logit_np, "label": label_np}
|
|
|
|
normalizer = None
|
|
if normalizer_np is not None:
|
|
normalizer = paddle.fluid.data(
|
|
name='normalizer', shape=normalizer_np.shape, dtype='float64')
|
|
feed_dict["normalizer"] = normalizer_np
|
|
|
|
res = call_sfl_functional(logit, label, normalizer, alpha, gamma,
|
|
reduction)
|
|
exe = paddle.static.Executor(place)
|
|
static_result = exe.run(prog, feed=feed_dict, fetch_list=[res])
|
|
return static_result
|
|
|
|
|
|
def test_dygraph(place,
|
|
logit_np,
|
|
label_np,
|
|
normalizer_np,
|
|
alpha=0.25,
|
|
gamma=2.0,
|
|
reduction='sum'):
|
|
paddle.disable_static()
|
|
logit = paddle.to_tensor(logit_np)
|
|
label = paddle.to_tensor(label_np)
|
|
normalizer = None
|
|
if normalizer_np is not None:
|
|
normalizer = paddle.to_tensor(normalizer_np)
|
|
dy_res = call_sfl_functional(logit, label, normalizer, alpha, gamma,
|
|
reduction)
|
|
dy_result = dy_res.numpy()
|
|
paddle.enable_static()
|
|
return dy_result
|
|
|
|
|
|
def calc_sigmoid_focal_loss(logit_np,
|
|
label_np,
|
|
normalizer_np,
|
|
alpha=0.25,
|
|
gamma=2.0,
|
|
reduction='sum'):
|
|
|
|
loss = np.maximum(
|
|
logit_np,
|
|
0) - logit_np * label_np + np.log(1 + np.exp(-np.abs(logit_np)))
|
|
|
|
pred = 1 / (1 + np.exp(-logit_np))
|
|
p_t = pred * label_np + (1 - pred) * (1 - label_np)
|
|
|
|
if alpha is not None:
|
|
alpha_t = alpha * label_np + (1 - alpha) * (1 - label_np)
|
|
loss = alpha_t * loss
|
|
|
|
if gamma is not None:
|
|
loss = loss * ((1 - p_t)**gamma)
|
|
|
|
if normalizer_np is not None:
|
|
loss = loss / normalizer_np
|
|
|
|
if reduction == 'mean':
|
|
loss = np.mean(loss)
|
|
elif reduction == 'sum':
|
|
loss = np.sum(loss)
|
|
|
|
return loss
|
|
|
|
|
|
class TestSigmoidFocalLoss(unittest.TestCase):
|
|
def test_SigmoidFocalLoss(self):
|
|
logit_np = np.random.uniform(
|
|
0.1, 0.8, size=(2, 3, 4, 10)).astype(np.float64)
|
|
label_np = np.random.randint(
|
|
0, 2, size=(2, 3, 4, 10)).astype(np.float64)
|
|
normalizer_nps = [
|
|
np.asarray(
|
|
[np.sum(label_np > 0)], dtype=label_np.dtype), None
|
|
]
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
reductions = ['sum', 'mean', 'none']
|
|
alphas = [0.25, 0.5]
|
|
gammas = [3, 0.]
|
|
for place in places:
|
|
for reduction in reductions:
|
|
for alpha in alphas:
|
|
for gamma in gammas:
|
|
for normalizer_np in normalizer_nps:
|
|
static_result = test_static(place, logit_np,
|
|
label_np, normalizer_np,
|
|
alpha, gamma, reduction)
|
|
dy_result = test_dygraph(place, logit_np, label_np,
|
|
normalizer_np, alpha,
|
|
gamma, reduction)
|
|
expected = calc_sigmoid_focal_loss(
|
|
logit_np, label_np, normalizer_np, alpha, gamma,
|
|
reduction)
|
|
self.assertTrue(
|
|
np.allclose(static_result, expected))
|
|
self.assertTrue(
|
|
np.allclose(static_result, dy_result))
|
|
self.assertTrue(np.allclose(dy_result, expected))
|
|
|
|
def test_SigmoidFocalLoss_error(self):
|
|
paddle.disable_static()
|
|
logit = paddle.to_tensor([[0.97], [0.91], [0.03]], dtype='float32')
|
|
label = paddle.to_tensor([[1.0], [1.0], [0.0]], dtype='float32')
|
|
self.assertRaises(
|
|
ValueError,
|
|
paddle.nn.functional.sigmoid_focal_loss,
|
|
logit=logit,
|
|
label=label,
|
|
normalizer=None,
|
|
reduction="unsupport reduction")
|
|
paddle.enable_static()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|