You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_sigmoid_focal_loss.py

166 lines
5.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest
from test_sigmoid_focal_loss_op import sigmoid_focal_loss_forward
def call_sfl_functional(logit,
label,
normalizer,
alpha=0.25,
gamma=2.0,
reduction='sum'):
res = paddle.nn.functional.sigmoid_focal_loss(
logit, label, normalizer, alpha=alpha, gamma=gamma, reduction=reduction)
return res
def test_static(place,
logit_np,
label_np,
normalizer_np,
alpha=0.25,
gamma=2.0,
reduction='sum'):
paddle.enable_static()
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
with paddle.static.program_guard(prog, startup_prog):
logit = paddle.fluid.data(name='logit', shape=logit_np.shape, dtype='float64')
label = paddle.fluid.data(name='label', shape=label_np.shape, dtype='float64')
feed_dict = {"logit": logit_np, "label": label_np}
normalizer = None
if normalizer_np is not None:
normalizer = paddle.fluid.data(
name='normalizer', shape=normalizer_np.shape, dtype='float64')
feed_dict["normalizer"] = normalizer_np
res = call_sfl_functional(logit, label, normalizer, alpha, gamma,
reduction)
exe = paddle.static.Executor(place)
static_result = exe.run(prog, feed=feed_dict, fetch_list=[res])
return static_result
def test_dygraph(place,
logit_np,
label_np,
normalizer_np,
alpha=0.25,
gamma=2.0,
reduction='sum'):
paddle.disable_static()
logit = paddle.to_tensor(logit_np)
label = paddle.to_tensor(label_np)
normalizer = None
if normalizer_np is not None:
normalizer = paddle.to_tensor(normalizer_np)
dy_res = call_sfl_functional(logit, label, normalizer, alpha, gamma,
reduction)
dy_result = dy_res.numpy()
paddle.enable_static()
return dy_result
def calc_sigmoid_focal_loss(logit_np,
label_np,
normalizer_np,
alpha=0.25,
gamma=2.0,
reduction='sum'):
loss = np.maximum(
logit_np,
0) - logit_np * label_np + np.log(1 + np.exp(-np.abs(logit_np)))
pred = 1 / (1 + np.exp(-logit_np))
p_t = pred * label_np + (1 - pred) * (1 - label_np)
if alpha is not None:
alpha_t = alpha * label_np + (1 - alpha) * (1 - label_np)
loss = alpha_t * loss
if gamma is not None:
loss = loss * ((1 - p_t)**gamma)
if normalizer_np is not None:
loss = loss / normalizer_np
if reduction == 'mean':
loss = np.mean(loss)
elif reduction == 'sum':
loss = np.sum(loss)
return loss
class TestSigmoidFocalLoss(unittest.TestCase):
def test_SigmoidFocalLoss(self):
logit_np = np.random.uniform(
0.1, 0.8, size=(2, 3, 4, 10)).astype(np.float64)
label_np = np.random.randint(
0, 2, size=(2, 3, 4, 10)).astype(np.float64)
normalizer_nps = [
np.asarray(
[np.sum(label_np > 0)], dtype=label_np.dtype), None
]
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
reductions = ['sum', 'mean', 'none']
alphas = [0.25, 0.5]
gammas = [3, 0.]
for place in places:
for reduction in reductions:
for alpha in alphas:
for gamma in gammas:
for normalizer_np in normalizer_nps:
static_result = test_static(place, logit_np,
label_np, normalizer_np,
alpha, gamma, reduction)
dy_result = test_dygraph(place, logit_np, label_np,
normalizer_np, alpha,
gamma, reduction)
expected = calc_sigmoid_focal_loss(
logit_np, label_np, normalizer_np, alpha, gamma,
reduction)
self.assertTrue(
np.allclose(static_result, expected))
self.assertTrue(
np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_SigmoidFocalLoss_error(self):
paddle.disable_static()
logit = paddle.to_tensor([[0.97], [0.91], [0.03]], dtype='float32')
label = paddle.to_tensor([[1.0], [1.0], [0.0]], dtype='float32')
self.assertRaises(
ValueError,
paddle.nn.functional.sigmoid_focal_loss,
logit=logit,
label=label,
normalizer=None,
reduction="unsupport reduction")
paddle.enable_static()
if __name__ == "__main__":
unittest.main()