You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
7.8 KiB
182 lines
7.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
def smooth_l1_loss_forward(val, delta):
|
|
abs_val = abs(val)
|
|
if abs_val <= delta:
|
|
return 0.5 * val * val
|
|
else:
|
|
return delta * (abs_val - 0.5 * delta)
|
|
|
|
|
|
def smooth_l1_loss_np(input, label, reduction='mean', delta=1.0):
|
|
diff = input - label
|
|
out = np.vectorize(smooth_l1_loss_forward)(diff, delta)
|
|
if reduction == 'sum':
|
|
return np.sum(out)
|
|
elif reduction == 'mean':
|
|
return np.mean(out)
|
|
elif reduction == 'none':
|
|
return out
|
|
|
|
|
|
class SmoothL1Loss(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(123)
|
|
|
|
def test_smooth_l1_loss_mean(self):
|
|
input_np = np.random.random([100, 200]).astype(np.float32)
|
|
label_np = np.random.random([100, 200]).astype(np.float32)
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(name='input', shape=[100, 200], dtype='float32')
|
|
label = fluid.data(name='label', shape=[100, 200], dtype='float32')
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss()
|
|
ret = smooth_l1_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_ret = exe.run(prog,
|
|
feed={
|
|
'input': input_np,
|
|
'label': label_np,
|
|
},
|
|
fetch_list=[ret])
|
|
self.assertIsNotNone(static_ret)
|
|
with fluid.dygraph.guard():
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss()
|
|
dy_ret = smooth_l1_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_ret_value = dy_ret.numpy()
|
|
self.assertIsNotNone(dy_ret_value)
|
|
expected = smooth_l1_loss_np(input_np, label_np, reduction='mean')
|
|
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
|
self.assertTrue(np.allclose(static_ret, expected))
|
|
self.assertTrue(np.allclose(dy_ret_value, expected))
|
|
|
|
def test_smooth_l1_loss_sum(self):
|
|
input_np = np.random.random([100, 200]).astype(np.float32)
|
|
label_np = np.random.random([100, 200]).astype(np.float32)
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(name='input', shape=[100, 200], dtype='float32')
|
|
label = fluid.data(name='label', shape=[100, 200], dtype='float32')
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(reduction='sum')
|
|
ret = smooth_l1_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_ret = exe.run(prog,
|
|
feed={
|
|
'input': input_np,
|
|
'label': label_np,
|
|
},
|
|
fetch_list=[ret])
|
|
self.assertIsNotNone(static_ret)
|
|
with fluid.dygraph.guard():
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(reduction='sum')
|
|
dy_ret = smooth_l1_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_ret_value = dy_ret.numpy()
|
|
self.assertIsNotNone(dy_ret_value)
|
|
expected = smooth_l1_loss_np(input_np, label_np, reduction='sum')
|
|
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
|
self.assertTrue(np.allclose(static_ret, expected))
|
|
self.assertTrue(np.allclose(dy_ret_value, expected))
|
|
|
|
def test_smooth_l1_loss_none(self):
|
|
input_np = np.random.random([100, 200]).astype(np.float32)
|
|
label_np = np.random.random([100, 200]).astype(np.float32)
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(name='input', shape=[100, 200], dtype='float32')
|
|
label = fluid.data(name='label', shape=[100, 200], dtype='float32')
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(reduction='none')
|
|
ret = smooth_l1_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_ret = exe.run(prog,
|
|
feed={
|
|
'input': input_np,
|
|
'label': label_np,
|
|
},
|
|
fetch_list=[ret])
|
|
self.assertIsNotNone(static_ret)
|
|
with fluid.dygraph.guard():
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(reduction='none')
|
|
dy_ret = smooth_l1_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_ret_value = dy_ret.numpy()
|
|
self.assertIsNotNone(dy_ret_value)
|
|
expected = smooth_l1_loss_np(input_np, label_np, reduction='none')
|
|
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
|
self.assertTrue(np.allclose(static_ret, expected))
|
|
self.assertTrue(np.allclose(dy_ret_value, expected))
|
|
|
|
def test_smooth_l1_loss_delta(self):
|
|
input_np = np.random.random([100, 200]).astype(np.float32)
|
|
label_np = np.random.random([100, 200]).astype(np.float32)
|
|
delta = np.random.rand()
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(name='input', shape=[100, 200], dtype='float32')
|
|
label = fluid.data(name='label', shape=[100, 200], dtype='float32')
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(delta=delta)
|
|
ret = smooth_l1_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_ret = exe.run(prog,
|
|
feed={
|
|
'input': input_np,
|
|
'label': label_np,
|
|
},
|
|
fetch_list=[ret])
|
|
self.assertIsNotNone(static_ret)
|
|
with fluid.dygraph.guard():
|
|
smooth_l1_loss = paddle.nn.loss.SmoothL1Loss(delta=delta)
|
|
dy_ret = smooth_l1_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_ret_value = dy_ret.numpy()
|
|
self.assertIsNotNone(dy_ret_value)
|
|
expected = smooth_l1_loss_np(input_np, label_np, delta=delta)
|
|
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
|
self.assertTrue(np.allclose(static_ret, expected))
|
|
self.assertTrue(np.allclose(dy_ret_value, expected))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|