You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
15 KiB
433 lines
15 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import paddle
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard, core
|
|
|
|
|
|
class TestSplitOp(OpTest):
|
|
def setUp(self):
|
|
self._set_op_type()
|
|
self.dtype = self.get_dtype()
|
|
axis = 1
|
|
x = np.random.random((4, 5, 6)).astype(self.dtype)
|
|
out = np.split(x, [2, 3], axis)
|
|
self.inputs = {'X': x}
|
|
self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
|
|
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
|
for i in range(len(out))]}
|
|
|
|
def get_dtype(self):
|
|
return "float64"
|
|
|
|
def _set_op_type(self):
|
|
self.op_type = "split"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['out0', 'out1', 'out2'])
|
|
|
|
|
|
# test with attr(num)
|
|
class TestSplitOp_2(OpTest):
|
|
def setUp(self):
|
|
self._set_op_type()
|
|
self.dtype = self.get_dtype()
|
|
self.init_data()
|
|
self.inputs = {'X': self.x}
|
|
self.attrs = {
|
|
'axis': self.axis,
|
|
'sections': self.sections,
|
|
'num': self.num
|
|
}
|
|
|
|
out = np.split(self.x, self.indices_or_sections, self.axis)
|
|
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
|
for i in range(len(out))]}
|
|
|
|
def init_data(self):
|
|
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
|
|
self.axis = 2
|
|
self.sections = []
|
|
self.num = 3
|
|
self.indices_or_sections = 3
|
|
|
|
def get_dtype(self):
|
|
return "float64"
|
|
|
|
def _set_op_type(self):
|
|
self.op_type = "split"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['out0', 'out1', 'out2'])
|
|
|
|
|
|
# attr(axis) is Tensor
|
|
class TestSplitOp_AxisTensor(OpTest):
|
|
def setUp(self):
|
|
self._set_op_type()
|
|
self.dtype = self.get_dtype()
|
|
self.init_data()
|
|
self.inputs = {
|
|
'X': self.x,
|
|
'AxisTensor': np.array([self.axis]).astype("int32")
|
|
}
|
|
self.attrs = {'sections': self.sections, 'num': self.num}
|
|
|
|
out = np.split(self.x, self.indices_or_sections, self.axis)
|
|
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
|
for i in range(len(out))]}
|
|
|
|
def init_data(self):
|
|
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
|
|
self.axis = 2
|
|
self.sections = []
|
|
self.num = 3
|
|
self.indices_or_sections = 3
|
|
|
|
def get_dtype(self):
|
|
return "float64"
|
|
|
|
def _set_op_type(self):
|
|
self.op_type = "split"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['out0', 'out1', 'out2'])
|
|
|
|
|
|
# attr(sections) is list containing Tensor
|
|
class TestSplitOp_SectionsTensor(OpTest):
|
|
def setUp(self):
|
|
self._set_op_type()
|
|
self.dtype = self.get_dtype()
|
|
self.init_data()
|
|
self.inputs = {'X': self.x}
|
|
|
|
sections_tensor = []
|
|
for index, ele in enumerate(self.sections):
|
|
sections_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype('int32') * ele))
|
|
|
|
self.inputs['SectionsTensorList'] = sections_tensor
|
|
|
|
self.attrs = {
|
|
'axis': self.axis,
|
|
'sections': self.sections_infer,
|
|
'num': self.num
|
|
}
|
|
|
|
out = np.split(self.x, self.indices_or_sections, self.axis)
|
|
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
|
for i in range(len(out))]}
|
|
|
|
def init_data(self):
|
|
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
|
|
self.axis = 1
|
|
self.sections = [2, 1, 2]
|
|
self.sections_infer = [-1, -1, -1]
|
|
self.num = 0
|
|
self.indices_or_sections = [2, 3]
|
|
|
|
def get_dtype(self):
|
|
return "float64"
|
|
|
|
def _set_op_type(self):
|
|
self.op_type = "split"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['out0', 'out1', 'out2'])
|
|
|
|
|
|
class TestSplitOp_unk_section(OpTest):
|
|
def setUp(self):
|
|
self._set_op_type()
|
|
self.dtype = self.get_dtype()
|
|
self.init_data()
|
|
self.inputs = {'X': self.x}
|
|
self.attrs = {
|
|
'axis': self.axis,
|
|
'sections': self.sections,
|
|
'num': self.num
|
|
}
|
|
|
|
out = np.split(self.x, self.indices_or_sections, self.axis)
|
|
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
|
for i in range(len(out))]}
|
|
|
|
def init_data(self):
|
|
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
|
|
self.axis = 2
|
|
self.sections = [2, 1, -1]
|
|
self.num = 0
|
|
self.indices_or_sections = [2, 3]
|
|
|
|
def get_dtype(self):
|
|
return "float64"
|
|
|
|
def _set_op_type(self):
|
|
self.op_type = "split"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], ['out0', 'out1', 'out2'])
|
|
|
|
|
|
class TestSplitByrefOp(OpTest):
|
|
def _set_op_type(self):
|
|
self.op_type = "split_byref"
|
|
|
|
|
|
#----------------Split Fp16----------------
|
|
|
|
|
|
def create_test_fp16(parent):
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSplitFp16(parent):
|
|
def get_dtype(self):
|
|
return np.float16
|
|
|
|
def test_check_grad(self):
|
|
pass
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
|
|
TestSplitFp16.__name__ = cls_name
|
|
globals()[cls_name] = TestSplitFp16
|
|
|
|
|
|
create_test_fp16(TestSplitOp)
|
|
|
|
|
|
class TestSplitAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
input_1 = np.random.random([4, 5, 6]).astype("int32")
|
|
positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
|
|
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
|
|
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
|
|
x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
|
|
x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')
|
|
|
|
out_0, out_1, out_2 = fluid.layers.split(
|
|
input=x_1,
|
|
num_or_sections=[positive_2_int64, positive_1_int32, -1],
|
|
dim=positive_1_int64)
|
|
|
|
out_3, out_4, out_5 = fluid.layers.split(
|
|
input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
|
|
fluid.layers.split(input=x_2, num_or_sections=2, dim=2)
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
[res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={"x_1": input_1,
|
|
"x_2": input_1},
|
|
fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])
|
|
|
|
out = np.split(input_1, [2, 3], 1)
|
|
assert np.array_equal(res_0, out[0])
|
|
assert np.array_equal(res_1, out[1])
|
|
assert np.array_equal(res_2, out[2])
|
|
assert np.array_equal(res_3, out[0])
|
|
assert np.array_equal(res_4, out[1])
|
|
assert np.array_equal(res_5, out[2])
|
|
|
|
|
|
class TestSplitOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
# The type of axis in split_op should be int or Variable.
|
|
def test_axis_type():
|
|
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
|
|
fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)
|
|
|
|
self.assertRaises(TypeError, test_axis_type)
|
|
|
|
# The type of axis in split_op should be int or Variable.
|
|
def test_axis_variable_type():
|
|
x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
|
|
x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
|
|
fluid.layers.split(input=x9, num_or_sections=2, dim=x10)
|
|
|
|
self.assertRaises(TypeError, test_axis_variable_type)
|
|
|
|
# The type of num_or_sections in split_op should be int, tuple or list.
|
|
def test_num_or_sections_type():
|
|
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
|
|
fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)
|
|
|
|
self.assertRaises(TypeError, test_num_or_sections_type)
|
|
|
|
def test_num_or_sections_type_tensor():
|
|
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
|
|
paddle.split(input=x7, num_or_sections=2.1, dim=3)
|
|
|
|
self.assertRaises(TypeError, test_num_or_sections_type_tensor)
|
|
|
|
def test_axis_type_tensor():
|
|
x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
|
|
paddle.split(input=x8, num_or_sections=2, dim=3.2)
|
|
|
|
self.assertRaises(TypeError, test_axis_type_tensor)
|
|
|
|
|
|
class API_TestSplit(unittest.TestCase):
|
|
def test_out(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
|
|
data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
|
|
x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
input1 = np.random.random([4, 6, 6]).astype('float64')
|
|
input2 = np.array([2]).astype('int32')
|
|
r0, r1, r2, = exe.run(feed={"data1": input1,
|
|
"data2": input2},
|
|
fetch_list=[x0, x1, x2])
|
|
ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
|
|
self.assertTrue(np.allclose(ex_x0, r0))
|
|
self.assertTrue(np.allclose(ex_x1, r1))
|
|
self.assertTrue(np.allclose(ex_x2, r2))
|
|
|
|
|
|
class API_TestSplit2(unittest.TestCase):
|
|
def test_out(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
|
|
x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
input1 = np.random.random([4, 6, 6]).astype('float64')
|
|
r0, r1, r2, = exe.run(feed={"data1": input1},
|
|
fetch_list=[x0, x1, x2])
|
|
ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
|
|
self.assertTrue(np.allclose(ex_x0, r0))
|
|
self.assertTrue(np.allclose(ex_x1, r1))
|
|
self.assertTrue(np.allclose(ex_x2, r2))
|
|
|
|
|
|
class API_TestSplit3(unittest.TestCase):
|
|
def test_out(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
|
|
x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
input1 = np.random.random([1, 10]).astype('float64')
|
|
r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
|
|
ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, r0))
|
|
self.assertTrue(np.allclose(ex_x1, r1))
|
|
|
|
|
|
class API_TestSplit4(unittest.TestCase):
|
|
def test_out(self):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
|
|
index = fluid.layers.data('index', shape=[1], dtype='int32')
|
|
x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
input1 = np.random.random([1, 10]).astype('float64')
|
|
input2 = np.array([7]).astype('int32')
|
|
r0, r1 = exe.run(feed={"data": input1,
|
|
"index": input2},
|
|
fetch_list=[x0, x1])
|
|
ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, r0))
|
|
self.assertTrue(np.allclose(ex_x1, r1))
|
|
|
|
|
|
class API_TestDygraphSplit(unittest.TestCase):
|
|
def test_out1(self):
|
|
with fluid.dygraph.guard():
|
|
input_1 = np.random.random([4, 6, 6]).astype("int32")
|
|
# input is a variable which shape is [4, 6, 6]
|
|
input = fluid.dygraph.to_variable(input_1)
|
|
x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
|
|
x0_out = x0.numpy()
|
|
x1_out = x1.numpy()
|
|
x2_out = x2.numpy()
|
|
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, x0_out))
|
|
self.assertTrue(np.allclose(ex_x1, x1_out))
|
|
self.assertTrue(np.allclose(ex_x2, x2_out))
|
|
|
|
def test_out2(self):
|
|
with fluid.dygraph.guard():
|
|
input_1 = np.random.random([4, 6, 6]).astype("bool")
|
|
# input is a variable which shape is [4, 6, 6]
|
|
input = fluid.dygraph.to_variable(input_1)
|
|
x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
|
|
x0_out = x0.numpy()
|
|
x1_out = x1.numpy()
|
|
x2_out = x2.numpy()
|
|
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, x0_out))
|
|
self.assertTrue(np.allclose(ex_x1, x1_out))
|
|
self.assertTrue(np.allclose(ex_x2, x2_out))
|
|
|
|
def test_out_tensor_input(self):
|
|
with fluid.dygraph.guard():
|
|
input_1 = np.random.random([4, 6, 6]).astype("int32")
|
|
# input is a variable which shape is [4, 6, 6]
|
|
input = fluid.dygraph.to_variable(input_1)
|
|
num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
|
|
x0, x1, x2 = paddle.split(
|
|
input, num_or_sections=[num1, 2, 2], axis=1)
|
|
x0_out = x0.numpy()
|
|
x1_out = x1.numpy()
|
|
x2_out = x2.numpy()
|
|
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, x0_out))
|
|
self.assertTrue(np.allclose(ex_x1, x1_out))
|
|
self.assertTrue(np.allclose(ex_x2, x2_out))
|
|
|
|
def test_axis_tensor_input(self):
|
|
with fluid.dygraph.guard():
|
|
input_1 = np.random.random([4, 6, 6]).astype("int32")
|
|
# input is a variable which shape is [4, 6, 6]
|
|
input = fluid.dygraph.to_variable(input_1)
|
|
num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
|
|
x0, x1, x2 = paddle.split(
|
|
input, num_or_sections=[2, 2, 2], axis=num1)
|
|
x0_out = x0.numpy()
|
|
x1_out = x1.numpy()
|
|
x2_out = x2.numpy()
|
|
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
|
|
self.assertTrue(np.allclose(ex_x0, x0_out))
|
|
self.assertTrue(np.allclose(ex_x1, x1_out))
|
|
self.assertTrue(np.allclose(ex_x2, x2_out))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|