You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_transpiler_ops.py

144 lines
5.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import traceback
import math
import collections
import six
import unittest
import numpy as np
import gc
gc.set_debug(gc.DEBUG_COLLECTABLE)
import paddle.fluid as fluid
from test_dist_transpiler import TranspilerTest
class TestFakeInit(TranspilerTest):
def net_conf(self):
dict_size, embedding_size, neg_num = 10000, 8, 5
input_word = fluid.layers.data(
name="input_word", shape=[1], dtype='int64', lod_level=1)
true_word = fluid.layers.data(
name='true_label', shape=[1], dtype='int64', lod_level=1)
neg_word = fluid.layers.data(
name="neg_label", shape=[1], dtype='int64', lod_level=1)
inputs = [input_word, true_word, neg_word]
init_width = 0.5 / embedding_size
input_emb = fluid.layers.embedding(
input=inputs[0],
is_sparse=True,
size=[dict_size, embedding_size],
param_attr=fluid.ParamAttr(
name='emb',
initializer=fluid.initializer.Uniform(-init_width, init_width)))
true_emb_w = fluid.layers.embedding(
input=inputs[1],
is_sparse=True,
size=[dict_size, embedding_size],
param_attr=fluid.ParamAttr(
name='emb_w',
initializer=fluid.initializer.Constant(value=0.0)))
true_emb_b = fluid.layers.embedding(
input=inputs[1],
is_sparse=True,
size=[dict_size, 1],
param_attr=fluid.ParamAttr(
name='emb_b',
initializer=fluid.initializer.Constant(value=0.0)))
neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
neg_word_reshape.stop_gradient = True
neg_emb_w = fluid.layers.embedding(
input=neg_word_reshape,
is_sparse=True,
size=[dict_size, embedding_size],
param_attr=fluid.ParamAttr(
name='emb_w', learning_rate=1.0))
neg_emb_w_re = fluid.layers.reshape(
neg_emb_w, shape=[-1, neg_num, embedding_size])
neg_emb_b = fluid.layers.embedding(
input=neg_word_reshape,
is_sparse=True,
size=[dict_size, 1],
param_attr=fluid.ParamAttr(
name='emb_b', learning_rate=1.0))
neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
true_logits = fluid.layers.elementwise_add(
fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(input_emb, true_emb_w),
dim=1,
keep_dim=True),
true_emb_b)
input_emb_re = fluid.layers.reshape(
input_emb, shape=[-1, 1, embedding_size])
neg_matmul = fluid.layers.matmul(
input_emb_re, neg_emb_w_re, transpose_y=True)
neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
# nce loss
label_ones = fluid.layers.fill_constant_batch_size_like(
true_logits, shape=[-1, 1], value=1.0, dtype='float32')
label_zeros = fluid.layers.fill_constant_batch_size_like(
true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')
true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
label_ones)
neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
label_zeros)
cost = fluid.layers.elementwise_add(
fluid.layers.reduce_sum(
true_xent, dim=1),
fluid.layers.reduce_sum(
neg_xent, dim=1))
avg_cost = fluid.layers.reduce_mean(cost)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=1.0,
decay_steps=2100,
decay_rate=0.1,
staircase=True))
sgd_optimizer.minimize(avg_cost)
def transpiler_test_impl(self):
trainer, startup = self.get_trainer()
fake_init_ops = []
for op in startup.global_block().ops:
if op.type == "fake_init":
fake_init_ops.append(op)
self.assertEqual(len(fake_init_ops), 3)
if __name__ == "__main__":
unittest.main()