You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.0 KiB
144 lines
5.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import traceback
|
|
import math
|
|
import collections
|
|
|
|
import six
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import gc
|
|
|
|
gc.set_debug(gc.DEBUG_COLLECTABLE)
|
|
|
|
import paddle.fluid as fluid
|
|
from test_dist_transpiler import TranspilerTest
|
|
|
|
|
|
class TestFakeInit(TranspilerTest):
|
|
def net_conf(self):
|
|
dict_size, embedding_size, neg_num = 10000, 8, 5
|
|
|
|
input_word = fluid.layers.data(
|
|
name="input_word", shape=[1], dtype='int64', lod_level=1)
|
|
true_word = fluid.layers.data(
|
|
name='true_label', shape=[1], dtype='int64', lod_level=1)
|
|
neg_word = fluid.layers.data(
|
|
name="neg_label", shape=[1], dtype='int64', lod_level=1)
|
|
inputs = [input_word, true_word, neg_word]
|
|
|
|
init_width = 0.5 / embedding_size
|
|
input_emb = fluid.layers.embedding(
|
|
input=inputs[0],
|
|
is_sparse=True,
|
|
size=[dict_size, embedding_size],
|
|
param_attr=fluid.ParamAttr(
|
|
name='emb',
|
|
initializer=fluid.initializer.Uniform(-init_width, init_width)))
|
|
|
|
true_emb_w = fluid.layers.embedding(
|
|
input=inputs[1],
|
|
is_sparse=True,
|
|
size=[dict_size, embedding_size],
|
|
param_attr=fluid.ParamAttr(
|
|
name='emb_w',
|
|
initializer=fluid.initializer.Constant(value=0.0)))
|
|
|
|
true_emb_b = fluid.layers.embedding(
|
|
input=inputs[1],
|
|
is_sparse=True,
|
|
size=[dict_size, 1],
|
|
param_attr=fluid.ParamAttr(
|
|
name='emb_b',
|
|
initializer=fluid.initializer.Constant(value=0.0)))
|
|
|
|
neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
|
|
neg_word_reshape.stop_gradient = True
|
|
|
|
neg_emb_w = fluid.layers.embedding(
|
|
input=neg_word_reshape,
|
|
is_sparse=True,
|
|
size=[dict_size, embedding_size],
|
|
param_attr=fluid.ParamAttr(
|
|
name='emb_w', learning_rate=1.0))
|
|
|
|
neg_emb_w_re = fluid.layers.reshape(
|
|
neg_emb_w, shape=[-1, neg_num, embedding_size])
|
|
|
|
neg_emb_b = fluid.layers.embedding(
|
|
input=neg_word_reshape,
|
|
is_sparse=True,
|
|
size=[dict_size, 1],
|
|
param_attr=fluid.ParamAttr(
|
|
name='emb_b', learning_rate=1.0))
|
|
|
|
neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
|
|
|
|
true_logits = fluid.layers.elementwise_add(
|
|
fluid.layers.reduce_sum(
|
|
fluid.layers.elementwise_mul(input_emb, true_emb_w),
|
|
dim=1,
|
|
keep_dim=True),
|
|
true_emb_b)
|
|
|
|
input_emb_re = fluid.layers.reshape(
|
|
input_emb, shape=[-1, 1, embedding_size])
|
|
|
|
neg_matmul = fluid.layers.matmul(
|
|
input_emb_re, neg_emb_w_re, transpose_y=True)
|
|
neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
|
|
neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
|
|
# nce loss
|
|
label_ones = fluid.layers.fill_constant_batch_size_like(
|
|
true_logits, shape=[-1, 1], value=1.0, dtype='float32')
|
|
label_zeros = fluid.layers.fill_constant_batch_size_like(
|
|
true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')
|
|
|
|
true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
|
|
label_ones)
|
|
neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
|
|
label_zeros)
|
|
cost = fluid.layers.elementwise_add(
|
|
fluid.layers.reduce_sum(
|
|
true_xent, dim=1),
|
|
fluid.layers.reduce_sum(
|
|
neg_xent, dim=1))
|
|
avg_cost = fluid.layers.reduce_mean(cost)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(
|
|
learning_rate=fluid.layers.exponential_decay(
|
|
learning_rate=1.0,
|
|
decay_steps=2100,
|
|
decay_rate=0.1,
|
|
staircase=True))
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
def transpiler_test_impl(self):
|
|
trainer, startup = self.get_trainer()
|
|
|
|
fake_init_ops = []
|
|
for op in startup.global_block().ops:
|
|
if op.type == "fake_init":
|
|
fake_init_ops.append(op)
|
|
|
|
self.assertEqual(len(fake_init_ops), 3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|