You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.4 KiB
185 lines
6.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at #
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.tensor as tensor
|
|
from paddle.fluid.framework import Program, program_guard
|
|
|
|
|
|
class TrilTriuOpDefaultTest(OpTest):
|
|
""" the base class of other op testcases
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.real_np_op = getattr(np, self.real_op_type)
|
|
|
|
self.op_type = "tril_triu"
|
|
self.inputs = {'X': self.X}
|
|
self.attrs = {
|
|
'diagonal': self.diagonal,
|
|
'lower': True if self.real_op_type == 'tril' else False,
|
|
}
|
|
self.outputs = {
|
|
'Out': self.real_np_op(self.X, self.diagonal)
|
|
if self.diagonal else self.real_np_op(self.X)
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
def initTestCase(self):
|
|
self.real_op_type = np.random.choice(['triu', 'tril'])
|
|
self.diagonal = None
|
|
self.X = np.arange(1, 101, dtype="float64").reshape([10, -1])
|
|
|
|
|
|
def case_generator(op_type, Xshape, diagonal, expected):
|
|
"""
|
|
Generate testcases with the params shape of X, diagonal and op_type.
|
|
If arg`expercted` is 'success', it will register an Optest case and expect to pass.
|
|
Otherwise, it will register an API case and check the expect failure.
|
|
"""
|
|
cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape,
|
|
diagonal)
|
|
errmsg = {
|
|
"diagonal: TypeError":
|
|
"diagonal in {} must be a python Int".format(op_type),
|
|
"input: ValueError":
|
|
"x shape in {} must be at least 2-D".format(op_type),
|
|
}
|
|
|
|
class FailureCase(unittest.TestCase):
|
|
def test_failure(self):
|
|
paddle.enable_static()
|
|
|
|
data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
|
|
with self.assertRaisesRegexp(
|
|
eval(expected.split(':')[-1]), errmsg[expected]):
|
|
getattr(tensor, op_type)(x=data, diagonal=diagonal)
|
|
|
|
class SuccessCase(TrilTriuOpDefaultTest):
|
|
def initTestCase(self):
|
|
paddle.enable_static()
|
|
|
|
self.real_op_type = op_type
|
|
self.diagonal = diagonal
|
|
self.X = np.random.random(Xshape).astype("float64")
|
|
|
|
CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase']
|
|
CLASS.__name__ = cls_name
|
|
globals()[cls_name] = CLASS
|
|
|
|
|
|
### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1]
|
|
### test the diagonal just at the border, upper/lower the border,
|
|
### negative/positive integer within range and a zero
|
|
cases = {
|
|
'success': {
|
|
(2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100], # normal shape
|
|
(10, 10, 1, 1): [-100, -1, 0, 1, 100], # small size of matrix
|
|
},
|
|
'diagonal: TypeError': {
|
|
(20, 20): [
|
|
'2020',
|
|
[20],
|
|
{
|
|
20: 20
|
|
},
|
|
(20, 20),
|
|
20.20,
|
|
], # str, list, dict, tuple, float
|
|
},
|
|
'input: ValueError': {
|
|
(2020, ): [None],
|
|
},
|
|
}
|
|
for _op_type in ['tril', 'triu']:
|
|
for _expected, _params in cases.items():
|
|
for _Xshape, _diaglist in _params.items():
|
|
list(
|
|
map(lambda _diagonal: case_generator(_op_type, _Xshape, _diagonal, _expected),
|
|
_diaglist))
|
|
|
|
|
|
class TestTrilTriuOpAPI(unittest.TestCase):
|
|
""" test case by using API and has -1 dimension
|
|
"""
|
|
|
|
def test_api(self):
|
|
paddle.enable_static()
|
|
|
|
dtypes = ['float16', 'float32']
|
|
for dtype in dtypes:
|
|
prog = Program()
|
|
startup_prog = Program()
|
|
with program_guard(prog, startup_prog):
|
|
data = np.random.random([1, 9, 9, 4]).astype(dtype)
|
|
x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
|
|
tril_out, triu_out = tensor.tril(x), tensor.triu(x)
|
|
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
tril_out, triu_out = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={"x": data},
|
|
fetch_list=[tril_out, triu_out], )
|
|
self.assertTrue(np.allclose(tril_out, np.tril(data)))
|
|
self.assertTrue(np.allclose(triu_out, np.triu(data)))
|
|
|
|
def test_api_with_dygraph(self):
|
|
paddle.disable_static()
|
|
|
|
dtypes = ['float16', 'float32']
|
|
for dtype in dtypes:
|
|
with fluid.dygraph.guard():
|
|
data = np.random.random([1, 9, 9, 4]).astype(dtype)
|
|
x = fluid.dygraph.to_variable(data)
|
|
tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(
|
|
x).numpy()
|
|
self.assertTrue(np.allclose(tril_out, np.tril(data)))
|
|
self.assertTrue(np.allclose(triu_out, np.triu(data)))
|
|
|
|
def test_fluid_api(self):
|
|
paddle.enable_static()
|
|
|
|
dtypes = ['float16', 'float32']
|
|
for dtype in dtypes:
|
|
prog = Program()
|
|
startup_prog = Program()
|
|
with program_guard(prog, startup_prog):
|
|
data = np.random.random([1, 9, 9, 4]).astype(dtype)
|
|
x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
|
|
triu_out = fluid.layers.triu(x)
|
|
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
triu_out = exe.run(fluid.default_main_program(),
|
|
feed={"x": data},
|
|
fetch_list=[triu_out])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|