You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.0 KiB
102 lines
3.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "NormProjectionLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
size_t CMRProjectionNormLayer::getSize() {
|
|
CHECK_EQ(inputLayers_.size(), 1UL);
|
|
size_t layerSize = 0;
|
|
imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
|
|
imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
|
|
if (imgSizeH_ == 0) {
|
|
imgSizeH_ = imgSizeY_;
|
|
}
|
|
if (imgSizeW_ == 0) {
|
|
imgSizeW_ = imgSize_;
|
|
}
|
|
outputH_ = imgSizeH_;
|
|
outputW_ = imgSizeW_;
|
|
layerSize = outputH_ * outputW_ * channels_;
|
|
|
|
getOutput().setFrameHeight(outputH_);
|
|
getOutput().setFrameWidth(outputW_);
|
|
return layerSize;
|
|
}
|
|
|
|
bool CMRProjectionNormLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
ResponseNormLayer::init(layerMap, parameterMap);
|
|
|
|
/* the size of inputs for norm-layer is 1 */
|
|
CHECK_EQ(config_.inputs_size(), 1);
|
|
|
|
createFunction(
|
|
forward_,
|
|
"CrossMapNormal",
|
|
FuncConfig().set("size", size_).set("scale", scale_).set("pow", pow_));
|
|
createFunction(
|
|
backward_,
|
|
"CrossMapNormalGrad",
|
|
FuncConfig().set("size", size_).set("scale", scale_).set("pow", pow_));
|
|
|
|
return true;
|
|
}
|
|
|
|
void CMRProjectionNormLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
/* malloc memory for the output_ if necessary */
|
|
/* note: one sample correspond to one row */
|
|
MatrixPtr input = inputLayers_[0]->getOutputValue();
|
|
size_t batchSize = input->getHeight();
|
|
int size = getSize();
|
|
resetOutput(batchSize, size);
|
|
|
|
Matrix::resizeOrCreate(denoms_, batchSize, size, /* trans */ false, useGpu_);
|
|
|
|
shape_ = TensorShape({batchSize, channels_, imgSizeH_, imgSizeW_});
|
|
|
|
// prepare forward arguments
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getInputValue(0), shape_);
|
|
outputs.addArg(*getOutputValue(), shape_, ASSIGN_TO);
|
|
outputs.addArg(*denoms_, shape_, ASSIGN_TO);
|
|
|
|
forward_[0]->calc(inputs, outputs);
|
|
}
|
|
|
|
void CMRProjectionNormLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
|
|
if (NULL == getInputGrad(0)) {
|
|
return;
|
|
}
|
|
|
|
// prepare backward arguments
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getInputValue(0), shape_);
|
|
inputs.addArg(*getOutputValue(), shape_);
|
|
inputs.addArg(*getOutputGrad(), shape_);
|
|
inputs.addArg(*denoms_, shape_);
|
|
outputs.addArg(*getInputGrad(0), shape_, ADD_TO);
|
|
|
|
backward_[0]->calc(inputs, outputs);
|
|
}
|
|
} // namespace paddle
|