You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/mkldnn_branch_net.conf

143 lines
4.0 KiB

# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=16)
channels = get_config_arg("channels", int, 2)
def two_conv(input, group_name):
out1 = img_conv_layer(input=input,
name=group_name+'_conv1_',
filter_size=1,
num_filters=channels,
padding=0,
shared_biases=True,
act=ReluActivation())
out2 = img_conv_layer(input=input,
name=group_name+'_conv2_',
filter_size=3,
num_filters=channels,
padding=1,
shared_biases=True,
act=ReluActivation())
return out1, out2
def two_conv_bn(input, group_name):
out1, out2 = two_conv(input, group_name)
out1 = batch_norm_layer(input=out1,
name=group_name+'_bn1_',
use_global_stats=False,
act=ReluActivation())
out2 = batch_norm_layer(input=out2,
name=group_name+'_bn2_',
use_global_stats=False,
act=ReluActivation())
return out1, out2
def two_conv_pool(input, group_name):
out1, out2 = two_conv(input, group_name)
out1 = img_pool_layer(input=out1,
name=group_name+'_pool1_',
pool_size=3,
stride=2,
padding=0,
pool_type=MaxPooling())
out2 = img_pool_layer(input=out2,
name=group_name+'_pool2_',
pool_size=5,
stride=2,
padding=1,
pool_type=MaxPooling())
return out1, out2
def two_fc(input, group_name):
out1 = fc_layer(input=input,
name=group_name+'_fc1_',
size=channels,
bias_attr=False,
act=LinearActivation())
out2 = fc_layer(input=input,
name=group_name+'_fc2_',
size=channels,
bias_attr=False,
act=LinearActivation())
return out1, out2
data = data_layer(name ="input", size=channels*16*16)
tmp = img_conv_layer(input=data,
num_channels=channels,
filter_size=3,
num_filters=channels,
padding=1,
shared_biases=True,
act=ReluActivation())
a1, a2 = two_conv(tmp, 'conv_branch')
tmp = addto_layer(input=[a1, a2],
act=ReluActivation(),
bias_attr=False)
tmp = img_pool_layer(input=tmp,
pool_size=3,
stride=2,
padding=1,
pool_type=AvgPooling())
b1, b2 = two_conv_pool(tmp, 'pool_branch')
tmp = concat_layer(input=[b1, b2])
tmp = img_pool_layer(input=tmp,
num_channels=channels*2,
pool_size=3,
stride=2,
padding=1,
pool_type=MaxPooling())
tmp = img_conv_layer(input=tmp,
filter_size=3,
num_filters=channels,
padding=1,
stride=2,
shared_biases=True,
act=LinearActivation(),
bias_attr=False)
tmp = batch_norm_layer(input=tmp,
use_global_stats=False,
act=ReluActivation())
c1, c2 = two_conv_bn(tmp, 'bn_branch')
tmp = addto_layer(input=[c1, c2],
act=ReluActivation(),
bias_attr=False)
tmp = fc_layer(input=tmp, size=channels,
bias_attr=True,
act=ReluActivation())
d1, d2 = two_fc(tmp, 'fc_branch')
tmp = addto_layer(input=[d1, d2])
out = fc_layer(input=tmp, size=10,
bias_attr=True,
act=SoftmaxActivation())
outputs(out)