You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
7.8 KiB
207 lines
7.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include "paddle/fluid/operators/concat_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::DataLayout;
|
|
using framework::Tensor;
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::concat;
|
|
using mkldnn::stream;
|
|
using platform::to_void_cast;
|
|
|
|
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
|
|
for (auto* input : inputs) {
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Input tensor");
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
|
|
"Wrong format set for Input tensor");
|
|
}
|
|
}
|
|
|
|
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
|
|
const mkldnn::engine& engine,
|
|
const memory::data_type& dt) {
|
|
const auto dims = paddle::framework::vectorize<int>(input.dims());
|
|
const auto format = input.format();
|
|
auto description = memory::desc(dims, dt, format);
|
|
auto mem_prim_desc = memory::primitive_desc(description, engine);
|
|
return mem_prim_desc;
|
|
}
|
|
|
|
static platform::CPUPlace GetCpuPlace(
|
|
const paddle::framework::ExecutionContext& ctx) {
|
|
auto place = ctx.GetPlace();
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
|
|
"It must use CPUPlace.");
|
|
return boost::get<platform::CPUPlace>(place);
|
|
}
|
|
|
|
static const mkldnn::engine& GetMKLDNNEngine(
|
|
const paddle::framework::ExecutionContext& ctx) {
|
|
auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
return dev_ctx.GetEngine();
|
|
}
|
|
|
|
template <typename T>
|
|
class ConcatPrimitiveFactory {
|
|
public:
|
|
concat::primitive_desc CreateConcatPrimDescriptor(
|
|
const std::vector<const Tensor*> multi_input, Tensor* output,
|
|
int concat_axis, const mkldnn::engine& mkldnn_engine,
|
|
const memory::data_type& dt = memory::data_type::f32) {
|
|
CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
|
|
auto dst_desc = CreateDstMemDescriptor(output, dt);
|
|
return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
|
|
}
|
|
|
|
concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
|
|
Tensor* output, platform::CPUPlace place) {
|
|
CreateSourcePrimitiveAts();
|
|
dst_mem = CreateDstMemory(concat_pd, output, place);
|
|
return concat(concat_pd, inputs, dst_mem.get());
|
|
}
|
|
|
|
void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
|
|
void* handler) {
|
|
srcs[i].set_data_handle(handler);
|
|
}
|
|
|
|
void SetDstDataHandle(const memory& dst_mem, void* handler) {
|
|
dst_mem.set_data_handle(handler);
|
|
}
|
|
|
|
std::vector<memory> GetSrcs() { return srcs; }
|
|
|
|
memory GetDst() { return dst_mem.get(); }
|
|
|
|
private:
|
|
memory::desc CreateDstMemDescriptor(Tensor* output,
|
|
const memory::data_type& dt) {
|
|
auto dst_dims = paddle::framework::vectorize<int>(output->dims());
|
|
return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
|
|
}
|
|
|
|
mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
|
|
Tensor* output,
|
|
const platform::CPUPlace& place) {
|
|
return memory(concat_pd.dst_primitive_desc(),
|
|
output->mutable_data<T>(place));
|
|
}
|
|
|
|
void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
|
|
const mkldnn::engine& mkldnn_engine,
|
|
const memory::data_type& dt) {
|
|
for (size_t i = 0; i < multi_input.size(); i++) {
|
|
auto mem_prim_desc =
|
|
CreateMemPrimDesc(*multi_input[i], mkldnn_engine, dt);
|
|
srcs_pd.push_back(mem_prim_desc);
|
|
srcs.push_back(
|
|
memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
|
|
}
|
|
}
|
|
|
|
void CreateSourcePrimitiveAts() {
|
|
inputs.reserve(srcs.size());
|
|
for (size_t i = 0; i < srcs.size(); i++) {
|
|
inputs.push_back(srcs[i]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<memory::primitive_desc> srcs_pd;
|
|
std::vector<memory> srcs;
|
|
std::vector<primitive::at> inputs;
|
|
boost::optional<memory> dst_mem;
|
|
};
|
|
|
|
template <typename T>
|
|
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
auto multi_input = ctx.MultiInput<Tensor>("X");
|
|
EnforceLayouts(multi_input);
|
|
Tensor* output = ctx.Output<Tensor>("Out");
|
|
int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
auto place = GetCpuPlace(ctx);
|
|
|
|
memory::data_type dt =
|
|
paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
|
|
|
|
ConcatPrimitiveFactory<T> prim_creator;
|
|
std::string key = platform::CreateKey(
|
|
paddle::framework::vectorize<int>(multi_input[0]->dims()),
|
|
ctx.op().Output("Out"), dt, platform::ThreadIDasStr());
|
|
const std::string key_prim = key + "@concat_p";
|
|
const std::string key_concat_pd = key + "@concat_pd";
|
|
const std::string key_srcs = key + "@concat_srcs";
|
|
const std::string key_dst = key + "@concat_dst";
|
|
|
|
std::shared_ptr<concat::primitive_desc> concat_pd;
|
|
std::shared_ptr<std::vector<memory>> srcs;
|
|
std::shared_ptr<memory> dst_mem;
|
|
auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));
|
|
|
|
if (concat_p == nullptr) {
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
concat_pd = std::make_shared<concat::primitive_desc>(
|
|
prim_creator.CreateConcatPrimDescriptor(multi_input, output,
|
|
static_cast<int>(concat_axis),
|
|
mkldnn_engine, dt));
|
|
concat_p = std::make_shared<concat>(
|
|
prim_creator.CreateConcatPrimitive(*concat_pd, output, place));
|
|
srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
|
|
dst_mem = std::make_shared<memory>(prim_creator.GetDst());
|
|
dev_ctx.SetBlob(key_prim, concat_p);
|
|
dev_ctx.SetBlob(key_concat_pd, concat_pd);
|
|
dev_ctx.SetBlob(key_srcs, srcs);
|
|
dev_ctx.SetBlob(key_dst, dst_mem);
|
|
} else {
|
|
srcs = std::static_pointer_cast<std::vector<memory>>(
|
|
dev_ctx.GetBlob(key_srcs));
|
|
dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
|
|
concat_pd = std::static_pointer_cast<concat::primitive_desc>(
|
|
dev_ctx.GetBlob(key_concat_pd));
|
|
for (size_t i = 0; i < multi_input.size(); i++) {
|
|
prim_creator.SetSrcDataHandleByIndex(
|
|
*srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
|
|
}
|
|
prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
|
|
}
|
|
|
|
stream(stream::kind::eager).submit({*concat_p}).wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(platform::GetMKLDNNFormat(*dst_mem));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConcatMKLDNNOpKernel<float>,
|
|
ops::ConcatMKLDNNOpKernel<int8_t>,
|
|
ops::ConcatMKLDNNOpKernel<uint8_t>);
|